Abstract

We show that Odd Cycle Transversal and Vertex Multiway Cut admit deterministic polynomial kernels when restricted to planar graphs and parameterized by the solution size. This answers a question of Saurabh. On the way to these results, we provide an efficient sparsification routine in the flavor of the sparsification routine used for the Steiner Tree problem in planar graphs [Pilipczuk et al., ACM Trans. Algorithms, 14 (2018), 53]. It differs from the previous work because it preserves the existence of low-cost subgraphs that are not necessarily Steiner trees in the original plane graph, but structures that turn into (supergraphs of) Steiner trees after adding all edges between pairs of vertices that lie on a common face. We also show connections between Vertex Multiway Cut and the Vertex Planarization problem, where the existence of a polynomial kernel remains an important open problem.

Keywords

  1. planar graphs
  2. polynomial kernel
  3. odd cycle transversal
  4. vertex multiway cut

MSC codes

  1. 68Q25
  2. 68W40
  3. 68R10
  4. 05C10
  5. 05C85

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin, On problems without polynomial kernels, J. Comput. System Sci., 75 (2009), pp. 423--434, https://doi.org/10.1016/j.jcss.2009.04.001.
2.
H. L. Bodlaender, S. Thomassé, and A. Yeo, Kernel bounds for disjoint cycles and disjoint paths, Theoret. Comput. Sci., 412 (2011), pp. 4570--4578, https://doi.org/10.1016/j.tcs.2011.04.039.
3.
M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, New York, 2015, https://doi.org/10.1007/978-3-319-21275-3.
4.
M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, On multiway cut parameterized above lower bounds, Trans. Comput. Theory, 5 (2013), 3, https://doi.org/10.1145/2462896.2462899.
5.
H. Dell and D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses, J. ACM, 61 (2014), 23, https://doi.org/10.1145/2629620.
6.
R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts Comput. Sci., Springer, New York, 2013, https://doi.org/10.1007/978-1-4471-5559-1.
7.
A. Drucker, New limits to classical and quantum instance compression, SIAM J. Comput., 44 (2015), pp. 1443--1479, https://doi.org/10.1137/130927115.
8.
D. Eisenstat and P. N. Klein, Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs, in proceedings of STOC, D. Boneh, T. Roughgarden, and J. Feigenbaum, eds., ACM, 2013, pp. 735--744, https://doi.org/10.1145/2488608.2488702.
9.
R. E. Erickson, C. L. Monma, and A. F. J. Veinott, Send-and-split method for minimum-concave-cost network flows, Math. Oper. Res., 12 (1987), pp. 634--664, https://doi.org/10.1287/moor.12.4.634.
10.
S. Fiorini, N. Hardy, B. Reed, and A. Vetta, Planar graph bipartization in linear time, Discrete Appl. Math., 156 (2008), pp. 1175--1180, https://doi.org/10.1016/j.dam.2007.08.013.
11.
F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh, Planar F-deletion: Approximation, kernelization and optimal FPT algorithms, in Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, New Brunswick, NJ, 2012, pp. 470--479, https://doi.org/10.1109/FOCS.2012.62.
12.
F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos, Bidimensionality and kernels, in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, M. Charikar, ed., SIAM, Philadelphia, 2010, pp. 503--510, https://doi.org/10.1137/1.9781611973075.43.
13.
L. Fortnow and R. Santhanam, Infeasibility of instance compression and succinct PCPs for NP, J. Comput. System Sci., 77 (2011), pp. 91--106, https://doi.org/10.1016/j.jcss.2010.06.007.
14.
N. Garg, V. V. Vazirani, and M. Yannakakis, Multiway cuts in node weighted graphs, J. Algorithms, 50 (2004), pp. 49--61, https://doi.org/10.1016/S0196-6774(03)00111-1.
15.
A. C. Giannopoulou, B. M. P. Jansen, D. Lokshtanov, and S. Saurabh, Uniform kernelization complexity of hitting forbidden minors, ACM Trans. Algorithms, 13 (2017), 35, https://doi.org/10.1145/3029051.
16.
S. Guillemot, FPT algorithms for path-transversal and cycle-transversal problems, Discrete Optim., 8 (2011), pp. 61--71, https://doi.org/10.1016/j.disopt.2010.05.003.
17.
F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM J. Comput., 4 (1975), pp. 221--225, https://doi.org/10.1137/0204019.
18.
J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. ACM, 21 (1974), pp. 549--568, https://doi.org/10.1145/321850.321852.
19.
B. M. P. Jansen, Polynomial Kernels for Hard Problems on Disk Graphs, in Proceedings of the 12th SWAT, Lecture Notes in Comput. Sci. 6139, Springer, New York, 2010, pp. 310--321, https://doi.org/10.1007/978-3-642-13731-0_30.
20.
B. M. P. Jansen, D. Lokshtanov, and S. Saurabh, A near-optimal planarization algorithm, in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, Portland, OR, C. Chekuri, ed., SIAM, Philadelphia, 2014, pp. 1802--1811, https://doi.org/10.1137/1.9781611973402.130.
21.
K. Kawarabayashi, Planarity allowing few error vertices in linear time, in Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, Atlanta, GA, IEEE Computer Society, 2009, pp. 639--648, https://doi.org/10.1109/FOCS.2009.45.
22.
S. Kratsch and M. Wahlström, Representative sets and irrelevant vertices: New tools for kernelization, in Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, New Brunswick, NJ, IEEE Computer Society, 2012, pp. 450--459, https://doi.org/10.1109/FOCS.2012.46.
23.
S. Kratsch and M. Wahlström, Compression via matroids: A randomized polynomial kernel for odd cycle transversal, ACM Trans. Algorithms, 10 (2014), 20, https://doi.org/10.1145/2635810.
24.
D. Lokshtanov, N. Misra, and S. Saurabh, Kernelization---preprocessing with a guarantee, in The Multivariate Algorithmic Revolution and Beyond, H. L. Bodlaender, R. Downey, F. V. Fomin, and D. Marx, eds., Lecture Notes in Comput. Sci. 7370, Springer, New York, 2012, pp. 129--161, https://doi.org/10.1007/978-3-642-30891-8_10.
25.
D. Lokshtanov, S. Saurabh, and M. Wahlström, Subexponential parameterized odd cycle transversal on planar graphs, in IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Hyderabad, D. D'Souza, T. Kavitha, and J. Radhakrishnan, eds., LIPIcs Leibniz Int. Proc. Inform. 18, Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2012, pp. 424--434, https://doi.org/10.4230/LIPIcs.FSTTCS.2012.424.
26.
D. Marx and I. Schlotter, Obtaining a planar graph by vertex deletion, Algorithmica, 62 (2012), pp. 807--822, https://doi.org/10.1007/s00453-010-9484-z.
27.
M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen, Network Sparsification for Steiner Problems on Planar and Bounded-genus Graphs, CoRR, http://arxiv.org/abs/1306.6593, 2013.
28.
M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen, Network sparsification for Steiner problems on planar and bounded-genus graphs, ACM Trans. Algorithms, 14 (2018), 53, https://doi.org/10.1145/3239560.
29.
I. Razgon, Large Isolating Cuts Shrink the Multiway Cut, CoRR, http://arxiv.org/abs/1104.5361, 2011.
30.
S. Saurabh, Open Problems from Recent Advances in Parameterized Complexity School, https://rapctelaviv.weebly.com/uploads/1/0/5/3/105379375/future.pdf, 2017.
31.
O. Suchý, Extending the kernel for planar Steiner tree to the number of Steiner vertices, Algorithmica, 79 (2017), pp. 189--210, https://doi.org/10.1007/s00453-016-0249-1.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 2387 - 2429
ISSN (online): 1095-7146

History

Submitted: 17 July 2020
Accepted: 7 June 2021
Published online: 18 October 2021

Keywords

  1. planar graphs
  2. polynomial kernel
  3. odd cycle transversal
  4. vertex multiway cut

MSC codes

  1. 68Q25
  2. 68W40
  3. 68R10
  4. 05C10
  5. 05C85

Authors

Affiliations

Funding Information

Fundacja na rzecz Nauki Polskiej https://doi.org/10.13039/501100001870
Nederlandse Organisatie voor Wetenschappelijk Onderzoek https://doi.org/10.13039/501100003246

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media