Abstract

Mathieu functions of period $\pi$ or $2\pi$, also called elliptic cylinder functions, were introduced in 1868 by Émile Mathieu together with so-called modified Mathieu functions, in order to help understand the vibrations of an elastic membrane set in a fixed elliptical hoop. These functions still occur frequently in applications today; our interest, for instance, was stimulated by a problem of pulsatile blood flow in a blood vessel compressed into an elliptical cross section. This paper surveys and recapitulates the historical development of the theory and methods of computation for Mathieu functions and modified Mathieu functions and identifies some gaps in current software capability, particularly related to double eigenvalues of the Mathieu equation. We demonstrate how to compute Puiseux expansions of the Mathieu eigenvalues about such double eigenvalues and give methods to compute the generalized eigenfunctions that arise there. In examining Mathieu's original contribution, we bring out that his use of antisecularity predates that of Lindstedt. For historical interest, we also provide short biographies of some of the major mathematical researchers involved in the history of the Mathieu functions: Émile Mathieu, Sir Edmund Whittaker, Edward Ince, and Gertrude Blanch.

Keywords

  1. Mathieu functions
  2. modified Mathieu functions
  3. historical survey
  4. computation of Mathieu functions
  5. double eigenvalues
  6. Puiseux series

MSC codes

  1. 01-02
  2. 33-02
  3. 33F05

Formats available

You can view the full content in the following formats:

References

1.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Courier Corporation, 1964.
2.
A. Aitken, Dr. E. L. Ince, Nature, 148 (1941), pp. 309--310.
3.
F. A. Alhargan, A complete method for the computations of Mathieu characteristic numbers of integer orders, SIAM Rev., 38 (1996), pp. 239--255, https://doi.org/10.1137/1038040.
4.
P. Arbenz and M. E. Hochstenbach, A Jacobi--Davidson method for solving complex symmetric eigenvalue problems, SIAM J. Sci. Comput., 25 (2004), pp. 1655--1673, https://doi.org/10.1137/S1064827502410992.
5.
E. R. G. Barroso, P. D. G. Pérez, and P. Popescu-Pampu, Variations on inversion theorems for Newton\textendashPuiseux series, Math. Ann., 368 (2016), pp. 1359--1397, https://doi.org/10.1007/s00208-016-1503-1.
6.
D. Barton, On Taylor series and stiff equations, ACM Trans. Math. Software, 6 (1980), pp. 280--294.
7.
Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743--1770, https://doi.org/10.1137/S1064827503430126.
8.
A. Benoit, M. Joldeş, and M. Mezzarobba, Rigorous uniform approximation of D-finite functions using Chebyshev expansions, Math. Comp., 86 (2017), pp. 1303--1341.
9.
W. Bickley, The tabulation of Mathieu functions, Math. Tables Aids Comput., 1 (1945), pp. 409--419.
10.
G. Blanch, On the computation of Mathieu functions, J. Math. Phys., 25 (1946), pp. 1--20, https://doi.org/10.1002/sapm19462511.
11.
G. Blanch, The asymptotic expansions for the odd periodic Mathieu functions, Trans. Amer. Math. Soc., 97 (1960), pp. 357--366.
12.
G. Blanch, Numerical evaluation of continued fractions, SIAM Rev., 6 (1964), pp. 383--421, https://doi.org/10.1137/1006092.
13.
G. Blanch, Numerical aspects of Mathieu eigenvalues, Rend. Circ. Mat. Palermo (2), 15 (1966), pp. 51--97.
14.
G. Blanch and D. Clemm, The double points of Mathieu's differential equation, Math. Comp., 23 (1969), pp. 97--108.
15.
G. Blanch, A. Lowan, R. Marshak, and H. Bethe, The internal temperature-density distribution of the sun, Astrophys. J., 94 (1941), pp. 37--45.
16.
E. Bolmont, P. Nabonnand, and L. Rollet, Les ambitions Parisiennes contrariées d'Émile Mathieu (1835--1890), 2015, https://images.math.cnrs.fr/Les-ambitions-parisiennes-contrariees-d-Emile-Mathieu-1835-1890.html.
17.
J. Bourget, Mémoire sur le mouvement vibratoire des membranes circulaires, Ann. Sci. École Norm. Sup., 3 (1866), pp. 55--95, https://doi.org/10.24033/asens.19.
18.
C. J. Bouwkamp, A note on Mathieu functions, Proc. Kon. Nederland. Akad. Wetensch., 51 (1948), pp. 891--893.
19.
J. Cano, S. Falkensteiner, and J. R. Sendra, Algebraic, rational and Puiseux series solutions of systems of autonomous algebraic ODEs of dimension one, Math. Comput. Sci., 15 (2021), pp. 189--198, https://doi.org/10.1007/s11786-020-00478-w.
20.
L. Chaos-Cador and E. Ley-Koo, Mathieu functions revisited: Matrix evaluation and generating functions, Revista Mexicana Fís., 48 (2002), pp. 67--75.
21.
R. M. Corless, Sobre la iteración cúbica inversa, La Gaceta de la RSME, 24 (2021), pp. 147--159; English preprint available from https://arxiv.org/abs/2007.06571.
22.
R. M. Corless, Pure Tone Modes for a 5:3 Elliptic Drum, preprint, https://arxiv.org/abs/2008.06936, 2020.
23.
R. M. Corless and N. Fillion, Backward error analysis for perturbation methods, in Algorithms and Complexity in Mathematics, Epistemology, and Science, Springer, 2019, pp. 35--79, https://doi.org/10.1007/978-1-4939-9051-1_3.
24.
R. M. Corless and E. J. Postma, Blends in Maple, in Maple in Mathematics Education and Research, Commun. Comput. Inform. Sci. 1414, R. M. Corless, J. Gerhard, and I. S. Katsireas, eds., Springer, Cham, 2021, pp. 167--184.
25.
R. M. Corless and L. R. Sevyeri, The Runge example for interpolation and Wilkinson's examples for rootfinding, SIAM Rev., 62 (2020), pp. 231--243, https://doi.org/10.1137/18M1181985.
26.
J. Dougall, The solution of Mathieu's differential equation, Proc. Edinburgh Math. Soc., 34 (1915), pp. 176--196.
27.
B. Duan and M. Zamir, Approximate solution for pulsatile flow in tubes of slightly noncircular cross-sections, Utilitas Math., 40 (1991), pp. 13--26.
28.
P. Duhem, Émile Mathieu, his life and works, Bull. Amer. Math. Soc., 1 (1892), pp. 156--168.
29.
A. Erdélyi, On certain expansions of the solutions of Mathieu's differential equation, Math. Proc. Cambridge Philos. Soc., 38 (1942), pp. 28--33.
30.
A. Erdélyi, Higher Transcendental Functions, McGraw-Hill, 1953.
31.
D. Erricolo, Acceleration of the convergence of series containing Mathieu functions using Shanks transformation, IEEE Antennas Wireless Propag. Lett., 2 (2003), pp. 58--61.
32.
D. Erricolo and G. Carluccio, Algorithm 934: Fortran 90 subroutines to compute Mathieu functions for complex values of the parameter, ACM Trans. Math. Software, 40 (2013), art. 8.
33.
T. F. Fairgrieve and A. D. Jepson, O.K. Floquet multipliers, SIAM J. Numer. Anal., 28 (1991), pp. 1446--1462, https://doi.org/10.1137/0728075.
34.
D. Frenkel and R. Portugal, Algebraic methods to compute Mathieu functions, J. Phys., 34 (2001), pp. 3541--3551.
35.
M. J. Gander and F. Kwok, Chladni figures and the Tacoma bridge: Motivating PDE eigenvalue problems via vibrating plates, SIAM Rev., 54 (2012), pp. 573--596, https://doi.org/10.1137/10081931X.
36.
M. J. Gander and H. Zhang, A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods, SIAM Rev., 61 (2019), pp. 3--76, https://doi.org/10.1137/16M109781X.
37.
K. O. Geddes, S. R. Czapor, and G. Labahn, Algorithms for Computer Algebra, Springer, 1992.
38.
A. Gil, J. Segura, and N. M. Temme, Numerical Methods for Special Functions, SIAM, 2007, https://doi.org/10.1137/1.9780898717822.
39.
S. Goldstein, Review of Lamésche, Mathieusche und verwandte Funktionen in Physik und Technik. By M.J.O. Strutt, Math. Gazette, 17 (1933), pp. 59--60, https://doi.org/10.2307/3607965.
40.
M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Springer, 1985, https://doi.org/10.1007/978-1-4612-5034-0.
41.
D. A. Grier, Gertrude Blanch of the mathematical tables project, IEEE Ann. History Comput., 19 (1997), pp. 18--27.
42.
K. Gustafsson, M. Lundh, and G. Söderlind, A PI stepsize control for the numerical solution of ordinary differential equations, BIT, 28 (1988), pp. 270--287.
43.
J. C. Gutiérrez-Vega, R. Rodr\iguez-Dagnino, M. Meneses-Nava, and S. Chávez-Cerda, Mathieu functions, a visual approach, Amer. J. Phys., 71 (2003), pp. 233--242.
44.
E. Heine, Handbuch der Kugelfunktionen I, II, Reimer, 1878.
45.
C. Hunter and B. Guerrieri, The eigenvalues of Mathieu's equation and their branch points, Stud. Appl. Math., 64 (1981), pp. 113--141.
46.
S. Ilie, G. Söderlind, and R. M. Corless, Adaptivity and computational complexity in the numerical solution of ODEs, J. Complexity, 24 (2008), pp. 341--361.
47.
E. Ince, A proof of the impossibility of the coexistence of two Mathieu functions, Proc. Camb. Phil. Soc., 21 (1922), pp. 117--120.
48.
E. Ince, The second solution of the Mathieu equation, Math. Proc. Camb. Phil. Soc., 23 (1926), pp. 47--49.
49.
E. Ince, The Mathieu equation with numerically large parameters, J. London Math. Soc., 1 (1927), pp. 46--50.
50.
E. Ince, Tables of the elliptic-cylinder functions, Proc. Roy. Soc. Edinburgh, 52 (1933), pp. 355--423.
51.
A. Iserles and M. Webb, Orthogonal systems with a skew-symmetric differentiation matrix, Found. Comput. Math., 19 (2019), pp. 1191--1221, https://doi.org/10.1007/s10208-019-09435-x.
52.
D. J. Jeffrey, Multivalued elementary functions in computer-algebra systems, in Artificial Intelligence and Symbolic Computation, G. A. Aranda-Corral, J. Calmet, and F. J. Martín-Mateos, eds., Springer, Cham, 2014, pp. 157--167.
53.
G. Kirlinger and G. F. Corliss, On Implicit Taylor Series Methods for Stiff ODEs, tech. report, Argonne National Laboratory, 1991.
54.
D. E. Knuth, Two notes on notation, Amer. Math. Monthly, 99 (1992), pp. 403--422, https://doi.org/10.1080/00029890.1992.11995869.
55.
T. W. Körner, Fourier Analysis, Cambridge University Press, 1989.
56.
M. Levi, Stability of the inverted pendulum---a topological explanation, SIAM Rev., 30 (1988), pp. 639--644, https://doi.org/10.1137/1030140.
57.
A. Lindstedt, Bemerkungen zur Integration einer gewissen Differentialgleichung, Astronom. Nach., 103 (1882), pp. 257--268, https://doi.org/10.1002/asna.18821031702.
58.
S. Lubkin and J. Stoker, Stability of columns and strings under periodically varying forces, Quart. Appl. Math., 1 (1943), pp. 215--236.
59.
É. Mathieu, Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique, J. Math. Pures Appl., 13 (1868), pp. 137--203.
60.
É. Mathieu, Memoir on the Vibratory Movement of an Elliptical Membrane, preprint, https://arxiv.org/abs/2103.02730, 2021; translated by R. H. C. Moir.
61.
J. Meixner, F. W. Schäfke, and G. Wolf, Mathieu Functions, Springer, 1980.
62.
M. Mezzarobba, NumGfun: A package for numerical and analytic computation with D-finite functions, in Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, 2010, pp. 139--145.
63.
M. Mezzarobba, A note on the space complexity of fast D-finite function evaluation, in Internat. Workshop on Computer Algebra in Scientific Computing, Springer, 2012, pp. 212--223.
64.
Y. Miyazaki, N. Asai, Y. Kikuchi, D. Cai, and Y. Ikebe, Computation of multiple eigenvalues of infinite tridiagonal matrices, Math. Comp., 73 (2004), pp. 719--730.
65.
P. M. Morse and H. Feshbach, Methods of theoretical physics, Amer. J. Phys., 22 (1954), pp. 410--413.
66.
H. Mulholland and S. Goldstein, The characteristic numbers of the Mathieu equation with purely imaginary parameter, London Edinburgh Dublin Phil. Mag. J. Sci., 8 (1929), pp. 834--840.
67.
D. Naylor, On simplified asymptotic formulas for a class of Mathieu functions, SIAM J. Math. Anal., 15 (1984), pp. 1205--1213, https://doi.org/10.1137/0515095.
68.
N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations by Taylor series (I): Computing Taylor coefficients, BIT, 45 (2005), pp. 561--591.
69.
L. Onsager, Solutions of the Mathieu Equation of Period $4$ Pi and Certain Related Functions, Ph.D. thesis, Yale University, 1935.
70.
B. N. Parlett, The Rayleigh quotient iteration and some generalizations for nonnormal matrices, Math. Comp., 28 (1974), pp. 679--693.
71.
A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series: More Special Functions, Vol. 3, Gordon and Breach Science, 1990; translated from the Russian by G. G. Gould.
72.
J. D. Pryce, Numerical Solution of Sturm-Liouville Problems, Oxford University Press, 1993.
73.
M. Richardson and L. N. Trefethen, A sinc function analogue of Chebfun, SIAM J. Sci. Comput., 33 (2011), pp. 2519--2535, https://doi.org/10.1137/110825947.
74.
H. Rubin, Anecdote on power series expansions of Mathieu functions, J. Math. Phys., 43 (1964), pp. 339--341.
75.
B. Salvy and P. Zimmermann, GFUN: A Maple package for the manipulation of generating and holonomic functions in one variable, ACM Trans. Math. Software, 20 (1994), pp. 163--177.
76.
M. Schneider and J. Marquardt, Fast computation of modified Mathieu functions applied to elliptical waveguide problems, IEEE Trans. Microwave Theory Tech., 47 (1999), pp. 513--516.
77.
A. P. Sexton, Abramowitz and Stegun---a resource for mathematical document analysis, in International Conference on Intelligent Computer Mathematics, Lecture Notes in Comput. Sci. 7362, Springer, 2012, pp. 159--168, https://doi.org/10.1007/978-3-642-31374-5_11.
78.
J. Shen and L.-L. Wang, On spectral approximations in elliptical geometries using Mathieu functions, Math. Comp., 78 (2009), pp. 815--844.
79.
G. Söderlind, L. Jay, and M. Calvo, Stiffness 1952--2012: Sixty years in search of a definition, BIT, 55 (2015), pp. 531--558.
80.
M. J. O. Strutt, Lamésche, Mathieusche und verwandte Funktionen in Physik und Technik, Vol. 3, Springer-Verlag, 1932.
81.
G. F. J. Temple, Edmund Taylor Whittaker, 1873--1956, 1956.
82.
G. Teschl, Ordinary Differential Equations and Dynamical Systems, Grad. Stud. Math. 140, American Mathematical Society, 2012.
83.
A. Townsend and S. Olver, The automatic solution of partial differential equations using a global spectral method, J. Comput. Phys., 299 (2015), pp. 106--123, https://doi.org/10.1016/j.jcp.2015.06.031.
84.
H. Tropp, Interview with Gertrude Blanch, Smithsonian Online Virtual Archives, 1973, https://sova.si.edu//details/NMAH.AC.0196\#ref86.
85.
M. Trott, The Mathematica Guidebook for Symbolics, Springer, 2007.
86.
A. Van Buren and J. Boisvert, Accurate calculation of the modified Mathieu functions of integer order, Quart. Appl. Math., 65 (2007), pp. 1--23.
87.
J. van der Hoeven, Fast evaluation of holonomic functions near and in regular singularities, J. Symbolic Comput., 31 (2001), pp. 717--744.
88.
B. van der Pol and M. J. O. Strutt, On the stability of the solutions of Mathieu's equation, London Edinburgh Dublin Phil. Mag. J. Sci., 5 (1928), pp. 18--38, https://doi.org/10.1080/14786440108564441.
89.
E. T. Whittaker, On the functions associated with the elliptic cylinder in harmonic analysis, in Proceedings of the Fifth International Congress of Mathematicians, Vol. 1, 1912, pp. 366--371.
90.
E. T. Whittaker, Edward Lindsay Ince: 1891--1941, J. London Math. Soc., 1 (1941), pp. 139--144.
91.
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1927.
92.
H. S. Wilf, Mathematics for the Physical Sciences, Dover, 1962.
93.
M. Zamir, Hemo-dynamics, Springer, 2016.
94.
C. Ziener, M. Rückl, T. Kampf, W. Bauer, and H. Schlemmer, Mathieu functions for purely imaginary parameters, J. Comput. Appl. Math., 236 (2012), pp. 4513--4524.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 653 - 720
ISSN (online): 1095-7200

History

Submitted: 5 August 2020
Accepted: 7 July 2021
Published online: 4 November 2021

Keywords

  1. Mathieu functions
  2. modified Mathieu functions
  3. historical survey
  4. computation of Mathieu functions
  5. double eigenvalues
  6. Puiseux series

MSC codes

  1. 01-02
  2. 33-02
  3. 33F05

Authors

Affiliations

Funding Information

Natural Sciences and Engineering Research Council of Canada https://doi.org/10.13039/501100000038 : RGPIN-2019-04749, RPIN-2020-06438
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/R014604/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media