Abstract

We consider the problem of parameter estimation for a class of continuous-time state space models (SSMs). In particular, we explore the case of a partially observed diffusion, with data also arriving according to a diffusion process. Based upon a standard identity of the score function, we consider two particle filter based methodologies to estimate the score function. Both methods rely on an online estimation algorithm for the score function, as described, e.g., in [P. Del Moral, A. Doucet, and S. S. Singh, M$2$AN Math. Model. Numer. Anal., 44 (2010), pp. 947--975], of $\mathcal{O}(N^2)$ cost, with $N\in\mathbb{N}$ the number of particles. The first approach employs a simple Euler discretization and standard particle smoothers and is of cost $\mathcal{O}(N^2 + N\Delta_l^{-1})$ per unit time, where $\Delta_l=2^{-l}$, $l\in\mathbb{N}_0$, is the time-discretization step. The second approach is new and based upon a novel diffusion bridge construction. It yields a new backward-type Feynman--Kac formula in continuous time for the score function and is presented along with a particle method for its approximation. Considering a time-discretization, the cost is $\mathcal{O}(N^2\Delta_l^{-1})$ per unit time. To improve computational costs, we then consider multilevel methodologies for the score function. We illustrate our parameter estimation method via stochastic gradient approaches in several numerical examples.

Keywords

  1. score function
  2. particle filter
  3. diffusion bridges
  4. parameter estimation

MSC codes

  1. 65C05
  2. 65C35
  3. 60G35
  4. 60J60
  5. 60J65
  6. 60H10
  7. 60H35
  8. 91G60

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material


PLEASE NOTE: These supplementary files have not been peer-reviewed.


Index of Supplementary Materials

Title of paper: Score-Based Parameter Estimation for a Class of Continuous-Time State Space Models

Authors: Alexandros Beskos, Dan Crisan, Ajay Jasra, Nikolas Kantas, and Hamza Ruzayqat

File: Suppmat.pdf

Type: PDF

Contents: It contains two sections. 1) Derivation of Eq 2.4 in the main manuscript. 2) L_r bound for the discretization error.

References

1.
A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Springer, New York, 2009.
2.
M. Ballesio, A. Jasra, E. von Schwerin, and R. Tempone, A Wasserstein Coupled Particle Filter for Multilevel Estimation, preprint, https://arxiv.org/abs/2004.03981, 2020.
3.
A. Benveniste, M. Métivier, and P. Priouret, Adaptive Algorithms and Stochastic Approximation, Springer-Verlag, New York, 1990.
4.
A. Beskos, O. Papaspiliopoulos, G. Roberts, and P. Fearnhead, Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion), J. R. Statist. Soc. Ser. B, 68 (2006), pp. 333--382.
5.
A. Beskos, D. Crisan, A. Jasra, N. Kantas, and H. Ruzayqat, Score-Based Parameter Estimation for a Class of Continuous-Time State Space Models, preprint, https://arxiv.org/abs/2008.07803v2, 2020.
6.
J. Bierkens, F. Van Der Meulen, and M. Schauer, Simulation of elliptic and hypo-elliptic conditional diffusions, Adv. Appl. Probab., 52 (2020), pp. 173--212.
7.
I. Botha, R. Kohn, and C. Drovandi, Particle methods for stochastic differential equation mixed effects models, Bayes. Anal., 16 (2021), pp. 575--609.
8.
F. Campillo and F. Le Gland, Maximum likelihood estimation for partially observed diffusions: Direct maximization vs. the EM algorithm, Stoch. Proc. Appl., 33 (1989), pp. 245--274.
9.
K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14 (2011), pp. 3--15.
10.
D. Crisan, Discretizing the continuous-time filtering problem: Order of convergence, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 572--597.
11.
D. Crisan and B. Rozovskii, The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011.
12.
P. Del Moral, Feynman-Kac Formulae, Springer, New York, 2004.
13.
P. Del Moral, A. Doucet, and S. S. Singh, A backward particle interpretation of Feynman-Kac formuale, M2AN Math. Model. Numer. Anal., 44 (2010), pp. 947--975.
14.
P. Del Moral, A. Doucet, and S. S. Singh, Forward Smoothing Using Sequential Monte Carlo, preprint, https://arxiv.org/abs/1012.5390, 2010.
15.
M. P. Etienne, P. Gloaguen, S. Le Corff, and J. Olsson, Backward Importance Sampling for Partially Observed Diffusion Processes, preprint, https://arxiv.org/abs/2002.05438v1, 2020.
16.
P. Gloaguen, M. P. Etienne, and S. Le Corff, Online sequential Monte Carlo smoother for partially observed diffusion processes, EURASIP J. Adv. Signal Process., 2018 (2018), 9.
17.
A. Jasra, K. Kamatani, K. J. H. Law, and Y. Zhou, Multilevel particle filters, SIAM J. Numer. Anal., 55 (2017), pp. 3068--3096, https://doi.org/10.1137/17M1111553.
18.
A. Jasra, K. J. H. Law, and F. Yu, Unbiased Filtering of a Class of Partially Observed Diffusions, preprint, https://arxiv.org/abs/2002.03747, 2020.
19.
A. Jasra and F. Yu, Central limit theorems for coupled particle filters, Adv. Appl. Probab., 52 (2020), pp. 942--1001.
20.
A. Jasra, F. Yu, and J. Heng, Multilevel particle filters for the nonlinear filtering problem in continuous time, Stat. Comput., 30 (2020), pp. 1381--1402.
21.
F. Le Gland and M. Mevel, Recursive identification in hidden Markov models, in Proceedings of the 36th IEEE Conference on Decision and Control, IEEE, Washington, DC, 1997, pp. 3468--3473.
22.
M. Mider, M. Schauer, and F. van der Meulen, Continuous-Discrete Smoothing of Diffusions, preprint, https://arxiv.org/abs/1712.03807, 2020.
23.
J. Olsson and J. Westerborn, Efficient particle-based online smoothing in general hidden Markov models: The PaRIS algorithm, Bernoulli, 23 (2017), pp. 1951--1996.
24.
O. Papaspiliopoulos, G. O. Roberts, and O. Stramer, Data augmentation for diffusions, J. Comput. Graph. Statist., 22 (2013), pp. 665--688.
25.
O. Papaspiliopoulos and G. Roberts, Importance sampling techniques for estimation of diffusion models, in Statistical Methods for Stochastic Differential Equations, Monogr. Statist. Appl. Probab. 124, CRC Press, Boca Raton, FL, 2012, pp. 311--340.
26.
J. Picard, Approximation of nonlinear filtering problems and order of convergence, in Filtering and Control of Random Processes, Springer, Berlin, Heidelberg, 1984, pp. 219--236.
27.
G. Poyiadjis, A. Doucet, and S. S. Singh, Particle approximations of the score and observed information matrix in state space models with application to parameter estimation, Biometrika, 98 (2011), pp. 65--80.
28.
S. Särkkä and T. Sottinen, Application of Girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems, Bayesian Anal., 3 (2008), pp. 555--584.
29.
M. Schauer, F. van der Meulen, and H. van Zanten, Guided proposals for simulating multi-dimensional diffusion bridges, Bernoulli, 23 (2017), pp. 2917--2950.
30.
D. Sen, A. Thiery, and A. Jasra, On coupling particle filters, Stat. Comput., 28 (2018), pp. 461--475.
31.
S. C. Surace and J. P. Pfister, Online maximum-likelihood estimation of the parameters of partially observed diffusion processes, IEEE Trans. Automat. Control, 64 (2019), pp. 2814--2829.
32.
D. Talay, Efficient numerical schemes for the approximation of expectations of functionals of the solution of a SDE and applications, in Filtering and Control of Random Processes, Springer, Berlin, Heidelberg, 1984, pp. 294--313.
33.
H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York, 2000.
34.
F. van der Meulen and M. Schauer, Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals, Electron. J. Stat., 11 (2017), pp. 2358--2396.
35.
G. A. Whitaker, A. Golightly, R. J. Boys, and C. Sherlock, Improved bridge constructs for stochastic differential equations, Stat. Comput., 27 (2017), pp. 885--900.
36.
S. Yonekura and A. Beskos, Online Smoothing for Diffusion Processes Observed with Noise, preprint, https://arxiv.org/abs/2003.12247, 2020.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A2555 - A2580
ISSN (online): 1095-7197

History

Submitted: 28 August 2020
Accepted: 4 May 2021
Published online: 15 July 2021

Keywords

  1. score function
  2. particle filter
  3. diffusion bridges
  4. parameter estimation

MSC codes

  1. 65C05
  2. 65C35
  3. 60G35
  4. 60J60
  5. 60J65
  6. 60H10
  7. 60H35
  8. 91G60

Authors

Affiliations

Funding Information

EU Synergy : DLV-856408
JP Morgan
King Abdullah University of Science and Technology https://doi.org/10.13039/501100004052
Leverhulme Trust https://doi.org/10.13039/501100000275

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media