Abstract

We introduce Robin boundary conditions for biharmonic operators, which are a model for elastically supported plates and are closely related to the study of spaces of traces of Sobolev functions. We study the dependence of the operator, its eigenvalues, and eigenfunctions on the Robin parameters. We show in particular that when the parameters go to plus infinity the Robin problem converges to other biharmonic problems, and we obtain estimates on the rate of divergence when the parameters go to minus infinity. We also analyze the dependence of the operator on smooth perturbations of the domain, computing the shape derivatives of the eigenvalues and giving a characterization for critical domains under volume and perimeter constraints. We include a number of open problems arising in the context of our results.

Keywords

  1. Bilaplacian
  2. biharmonic operator
  3. Robin boundary conditions
  4. asymptotic behaviour of eigenvalues

MSC codes

  1. Primary
  2. 35J40; Secondary
  3. 35B40
  4. 35P15
  5. 49R05
  6. 49K20
  7. 74K20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P. R. S. Antunes, D. Buoso, and P. Freitas, On the behavior of clamped plates under large compression, SIAM J. Appl. Math., 79 (2019), pp. 1872--1891, https://doi.org/10.1137/19M1249606.
2.
P. R. S. Antunes, P. Freitas, and D. Krejčiřík, Bounds and extremal domains for Robin eigenvalues with negative boundary parameter, Adv. Calc. Var., 10 (2017), pp. 357--379, https://doi.org/10.1515/acv-2015-0045.
3.
W. Arendt and A. F. M. ter Elst, The Dirichlet-to-Neumann operator on rough domains, J. Differential Equations, 67 (2011), pp. 2100--2124, https://doi.org/10.1016/j.jde.2011.06.017.
4.
W. Arendt and A. F. M. ter Elst, Sectorial forms and degenerate differential operators, J. Operator Theory, 67 (2012), pp. 33--72.
5.
J. M. Arrieta, F. Ferraresso, and P. D. Lamberti, Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains, Integral Equations Operator Theory, 89 (2017), pp. 377--408, https://doi.org/10.1007/s00020-017-2391-9.
6.
J. M. Arrieta and P. D. Lamberti, Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems, J. Differential Equations, 263 (2017), pp. 4222--4266, https://doi.org/10.1016/j.jde.2017.05.011.
7.
M. S. Ashbaugh and R. D. Benguria, On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions, Duke Math. J., 78 (1995), pp. 1--7, https://doi.org/10.1215/S0012-7094-95-07801-6.
8.
M. Bareket, On an isoperimetric inequality for the first eigenvalue of a boundary value problem, SIAM J. Math. Anal., 8 (1977), pp. 280--287, https://doi.org/10.1137/0508020.
9.
O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representation of Functions and Embedding Theorems, Vol. I, Scripta Series in Mathematics, Halsted Press, New York, 1978.
10.
O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representation of Functions and Embedding Theorems, Vol. II, Scripta Series in Mathematics, Halsted Press, New York, 1979.
11.
S. Bögli, J. B. Kennedy, and R. Lang, On the Eigenvalues of the Robin Laplacian with a Complex Parameter, preprint, arXiv:1908.06041, 2019.
12.
M.-H. Bossel, Membranes élastiquement liées: Extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), pp. 47--50.
13.
L. Brasco and G. D. Philippis, Spectral inequalities in quantitative form, in Shape Optimization and Spectral Theory, De Gruyter, Berlin, 2017, pp. 201--281, https://doi.org/10.1515/9783110550887-007.
14.
D. Bucur and D. Daners, An alternative approach to the Faber-Krahn inequality for Robin problems, Calc. Var. Partial Differential Equations, 37 (2010), pp. 75--86, https://doi.org/10.1007/s00526-009-0252-3.
15.
D. Bucur, A. Ferrero, and F. Gazzola, On the first eigenvalue of a fourth order Steklov problem, Calc. Var. Partial Differential Equations, 35 (2009), pp. 103--131, https://doi.org/10.1007/s00526-008-0199-9.
16.
D. Bucur, P. Freitas, and J. Kennedy, The Robin Problem, in Shape Optimization and Spectral Theory, De Gruyter, Berlin, 2017, pp. 78--119, https://doi.org/10.1515/9783110550887-004.
17.
D. Bucur and F. Gazzola, The first biharmonic Steklov eigenvalue: Positivity preserving and shape optimization, Milan J. Math., 79 (2011), pp. 247--2581, https://doi.org/10.1007/s00032-011-0143-x.
18.
D. Buoso, Shape differentiability of the eigenvalues of elliptic systems, in Integral Methods in Science and Engineering, C. Constanda and A. Kirsch, eds., Springer, Cham, 2015, pp. 91--97.
19.
D. Buoso, Analyticity and criticality results for the eigenvalues of the biharmonic operator, in Geometric Properties for Parabolic and Elliptic PDEs, F. Gazzola, K. Ishige, C. Nitsch, and P. Salani, eds., Springer, Cham, 2016, pp. 65--85.
20.
D. Buoso, L. M. Chasman, and L. Provenzano, On the stability of some isoperimetric inequalities for the fundamental tones of free plates, J. Spectr. Theory, 8 (2018), pp. 843--869, https://doi.org/10.4171/JST/214.
21.
D. Buoso and P. D. Lamberti, Eigenvalues of polyharmonic operators on variable domains, ESAIM Control Optim. Calc. Var., 19 (2013), pp. 1225--1235, https://doi.org/10.1051/cocv/2013054.
22.
D. Buoso and P. D. Lamberti, On a Classical Spectral Optimization Problem in Linear Elasticity, Springer, Cham, 2015, pp. 43--55, https://doi.org/10.1007/978-3-319-17563-8_3.
23.
D. Buoso and E. Parini, The buckling eigenvalue problem in the annulus, Commun. Contemp. Math., 23 (2021), 2050044, https://doi.org/10.1142/S0219199720500443.
24.
D. Buoso and L. Provenzano, A few shape optimization results for a biharmonic Steklov problem, J. Differential Equations, 259 (2015), pp. 1778--1818, https://doi.org/10.1016/j.jde.2015.03.013.
25.
D. Buoso, L. Provenzano, and J. Stubbe, Semiclassical Bounds for Spectra of Biharmonic Operators, arXiv:1904.11877v2, 2020.
26.
V. I. Burenkov, Sobolev Spaces on Domains, Teubner Texts in Math. 137, Teubner, Stuttgart, 1998.
27.
F. Cakoni, N. Chaulet, and H. Haddar, On the asymptotics of a Robin eigenvalue problem, C. R. Math. Acad. Sci. Paris, 351 (2013), pp. 517--521, https://doi.org/10.1016/j.crma.2013.07.022.
28.
L. Chasman and J. Langford, A Sharp Isoperimetric Inequality for the Second Eigenvalue of the Robin Plate, preprint, arXiv:2010.10576v2, 2020.
29.
L. M. Chasman, An isoperimetric inequality for fundamental tones of free plates, Comm. Math. Phys., 303 (2011), pp. 421--449, https://doi.org/10.1007/s00220-010-1171-z.
30.
L. M. Chasman, An isoperimetric inequality for fundamental tones of free plates with nonzero Poisson's ratio, Appl. Anal., 95 (2016), pp. 1700--1735, https://doi.org/10.1080/00036811.2015.1068299.
31.
R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Wiley, New York, 1989.
32.
D. Daners and J. Kennedy, On the asymptotic behaviour of the eigenvalues of a Robin problem, Differential Integral Equations, 23 (2010), pp. 659--669.
33.
P. Exner, A. Minakov, and L. Parnovski, Asymptotic eigenvalue estimates for a Robin problem with a large parameter, Port. Math., 71 (2014), pp. 141--156, https://doi.org/10.4171/PM/1945.
34.
A. Ferrero, F. Gazzola, and T. Weth, On a fourth order Steklov eigenvalue problem, Analysis, 25 (2005), pp. 315--332, https://doi.org/10.1524/anly.2005.25.4.315.
35.
A. Ferrero and P. D. Lamberti, Spectral stability for a class of fourth order Steklov problems under domain perturbations, Calc. Var. Partial Differential Equations, 58 (2019), 33, https://doi.org/10.1007/s00526-018-1481-0.
36.
G. Fichera, Su un principio di dualità per talune formole di maggiorazione relative alle equazioni differenziali, Atti Accad. Naz. Lincei, 19 (1955), pp. 411--418.
37.
A. Filinovskiy, On the eigenvalues of a Robin problem with a large parameter, Math. Bohem., 139 (2014), pp. 341--352.
38.
A. Filinovskiy, On the asymptotic behavior of the first eigenvalue of Robin problem with large parameter, J. Elliptic Parabol. Equ., 1 (2015), pp. 123--135, https://doi.org/10.1007/BF03377372.
39.
A. V. Filinovskiy, On the estimates of the eigenvalues of the boundary value problem with large parameter, Tatra Mt. Math. Publ., 63 (2015), pp. 101--113, https://doi.org/10.1515/tmmp-2015-0023.
40.
J. Fleckinger and M. L. Lapidus, Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc., 295 (1986), pp. 305--324, https://doi.org/10.1090/S0002-9947-1986-0831201-3.
41.
L. S. Frank, Coercive singular perturbations: Eigenvalue problems and bifurcation phenomena, Ann. Mat. Pura Appl., 148 (1987), pp. 367--395, https://doi.org/10.1007/BF01774296.
42.
P. Freitas and D. Krejcirík, The first Robin eigenvalue with negative boundary parameter, Adv. Math., 280 (2015), pp. 322--339, https://doi.org/10.1016/j.aim.2015.04.023.
43.
P. Freitas and R. S. Laugesen, From Neumann to Steklov and beyond, via Robin: The Weinberger way, Amer. J. Math., 143 (2021), pp. 969--994.
44.
P. Freitas and R. S. Laugesen, From Steklov to Neumann and beyond, via Robin: The Szegö way, Canad. J. Math., 72 (2020), pp. 1024--1043, https://doi.org/10.4153/S0008414X19000154.
45.
F. Gazzola, H. C. Grunau, and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Math. 1991, Springer-Verlag, Berlin, 2010.
46.
T. Giorgi and R. Smits, Eigenvalue estimates and critical temperature in zero fields for enhanced surface superconductivity, Z. Angew. Math. Phys., 58 (2007), pp. 224--245, https://doi.org/10.1007/s00033-005-0049-y.
47.
W. M. Greenlee, Singular perturbation of eigenvalues, Arch. Ration. Mech. Anal., 34 (1969), pp. 143--164, https://doi.org/10.1007/BF00247463.
48.
W. M. Greenlee, Stability theorems for singular perturbation of eigenvalues, Manuscripta Math., 34 (1981), pp. 157--174, https://doi.org/10.1007/BF01165534.
49.
B. Helffer, A. Kachmar, and N. Raymond, Tunneling for the Robin Laplacian in smooth planar domains, Commun. Contemp. Math., 19 (2017), 1650030, https://doi.org/10.1142/S0219199716500309.
50.
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Math., Birkhäuser Verlag, Basel, 2006.
51.
D. Henry, Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations, London Math. Soc. Lecture Note Ser. 318, Cambridge University Press, Cambridge, UK, 2005.
52.
T. Kato, Perturbation theory of semi-bounded operators, Math. Ann., 125 (1953), pp. 435--447, https://doi.org/10.1007/BF01343135.
53.
T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer-Verlag, Berlin, 1976.
54.
B. Kawohl, H. A. Levine, and W. Velte, Buckling eigenvalues for a clamped plate embedded in an elastic medium and related questions, SIAM J. Math. Anal., 24 (1993), pp. 327--340, https://doi.org/10.1137/0524022.
55.
M. Khalile, Spectral asymptotics for Robin Laplacians on polygonal domains, J. Math. Anal. Appl., 461 (2018), pp. 1498--1543, https://doi.org/10.1016/j.jmaa.2018.01.062.
56.
S. G. Krantz, Function Theory of Several Complex Variables, AMS Chelsea, Providence, RI, 2001.
57.
J. R. Kuttler, Remarks on a Stekloff eigenvalue problem, SIAM J. Numer. Anal., 9 (1972), pp. 1--5, https://doi.org/10.1137/0709001.
58.
J. R. Kuttler and V. G. Sigillito, Inequalities for membrane and Stekloff eigenvalues, J. Math. Anal. Appl., 23 (1968), pp. 148--160, https://doi.org/10.1016/0022-247X(68)90123-6.
59.
A. A. Lacey, J. R. Ockendon, and J. Sabina, Multidimensional reaction diffusion equations with nonlinear boundary conditions, SIAM J. Appl. Math., 58 (1998), pp. 1622--1647, https://doi.org/10.1137/S0036139996308121.
60.
P. D. Lamberti, Steklov-type eigenvalues associated with best Sobolev trace constants: Domain perturbation and overdetermined systems, Complex Var. Elliptic Equ., 59 (2014), pp. 309--323, https://doi.org/10.1080/17476933.2011.557155.
61.
P. D. Lamberti and M. Lanza de Cristoforis, A real analyticity result for symmetric functions of the eigenvalues of a domain-dependent Neumann problem for the Laplace operator, Mediterr. J. Math., 4 (2007), pp. 435--449, https://doi.org/10.1007/s00009-007-0128-8.
62.
P. D. Lamberti and M. Lanza de Cristoforis, A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator, J. Nonlinear Convex Anal., 5 (2004), pp. 19--42.
63.
P. D. Lamberti and L. Provenzano, On trace theorems for Sobolev spaces, Matematiche, 75 (2020), pp. 137--175, https://doi.org/10.4418/2020.75.1.8.
64.
P. D. Lamberti and L. Provenzano, On the explicit representation of the trace space ${H}^{\frac 3 2}$ and of the solutions to biharmonic Dirichlet problems on Lipschitz domains via multi-parameter Steklov problems, Rev. Mat. Complut. (2021), https://doi.org/10.1007/s13163-021-00385-z.
65.
M. Levitin and L. Parnovski, On the principal eigenvalue of a Robin problem with a large parameter, Math. Nachr., 281 (2008), pp. 272--281, https://doi.org/10.1002/mana.200510600.
66.
J. L. Lions, Équations différentielles opérationnelles et problèmes aux limites, 4th ed., Grundlehren Math. Wiss. 111, Springer-Verlag, Berlin, 2013.
67.
J.-P. Z. M. C. Delfour, Shapes and Geometries. Analysis, Differential Calculus, and Optimization, Adv. Des. Control 4, SIAM, Philadelphia, 2001.
68.
N. S. Nadirashvili, Rayleigh's conjecture on the principal frequency of the clamped plate, Arch. Ration. Mech. Anal., 129 (1995), pp. 1--10, https://doi.org/10.1007/BF00375124.
69.
J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris, 1967.
70.
K. Pankrashkin and N. Popoff, Mean curvature bounds and eigenvalues of Robin Laplacians, Calc. Var. Partial Differential Equations, 54 (2015), pp. 1947--1961, https://doi.org/10.1007/s00526-015-0850-1.
71.
K. Pankrashkin and N. Popoff, An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter, J. Math. Pures Appl., 106 (2016), pp. 615--650, https://doi.org/10.1016/j.matpur.2016.03.005.
72.
L. Provenzano, A note on the Neumann eigenvalues of the biharmonic operator, Math. Methods Appl. Sci., 41 (2018), pp. 1005--1012, https://doi.org/10.1002/mma.4063.
73.
F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and Breach, New York, 1969.
74.
Y. S. D. Vassiliev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Transl. Math. Monogr. 155, AMS, Providence, RI, 1997.
75.
G. Verchota, The biharmonic Neumann problem in Lipschitz domains, Acta Math., 194 (2005), pp. 217--279, https://doi.org/10.1007/BF02393222.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 36 - 78
ISSN (online): 1095-7154

History

Submitted: 2 September 2020
Accepted: 5 August 2021
Published online: 4 January 2022

Keywords

  1. Bilaplacian
  2. biharmonic operator
  3. Robin boundary conditions
  4. asymptotic behaviour of eigenvalues

MSC codes

  1. Primary
  2. 35J40; Secondary
  3. 35B40
  4. 35P15
  5. 49R05
  6. 49K20
  7. 74K20

Authors

Affiliations

Funding Information

Fundacao para a Ciencia e a Tecnología : IF/00177/2013, IF/01461/2015, PTDC/MAT-CAL/4334/2014, PTDC/MAT-PUR/1788/2020
SNSF : 200021_178735

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media