Abstract

In this work, new finite difference schemes are presented for dealing with the upper-convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equation of the popular viscoelastic models, is reformulated in order to obtain approximations of second-order in time for solving a simplified constitutive equation in one and two dimensions. The theoretical analysis of the truncation errors of the methods takes into account the linear and quadratic interpolation operators based on a Lagrangian framework. Numerical experiments illustrating the theoretical results for the model equation defined in one and two dimensions are included. Finally, the finite difference approximations of second-order in time are also applied for solving a two-dimensional Oldroyd-B constitutive equation subjected to a prescribed velocity field at different Weissenberg numbers.

Keywords

  1. generalized Lie derivative
  2. Lagrangian scheme
  3. finite difference method

MSC codes

  1. 65M25
  2. 76A10
  3. 76M20

Formats available

You can view the full content in the following formats:

References

1.
M. A. Alves, P. J. Oliveira, and F. T. Pinho, Benchmark solutions for the flow of Oldroyd-b and PTT fluids in planar contractions, J. Non-Newton. Fluid Mech., 110 (2003), pp. 45--75.
2.
K. Baba and M. Tabata, On a conservation upwind finite element scheme for convective diffusion equations, RAIRO Anal. Numer., 15 (1981), pp. 3--25.
3.
J. Baranger and A. Machmoum, Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method, Comput. Methods Appl. Mech. Engrg., 148 (1997), pp. 39--52.
4.
F. G. Basombrío, Flows of viscoelastic fluids treated by the method of characteristics, J. Non-Newton. Fluid Mech., 39 (1991), pp. 17--54.
5.
M. Benítez and A. Bermúdez, Numerical analysis of a second-order pure Lagrange--Galerkin method for convection-diffusion problems. Part I: Time discretization, SIAM J. Numer. Anal., 50 (2012), pp. 858--882.
6.
R. Bermejo, P. Gálan del Sastre, and L. Saavedra, A second order in time modified Lagrange--Galerkin finite element method for the incompressible Navier--Stokes equations, SIAM J. Numer. Anal., 50 (2012), pp. 3084--3109.
7.
R. Bermejo and L. Saavedra, Modified Lagrange--Galerkin methods of first and second order in time for convection-diffusion problems, Numer. Math., 120 (2012), pp. 601--638.
8.
M. Breuss, The implicit upwind method for $1$D scalar conservation laws with continuous fluxes, SIAM J. Numer. Anal., 43 (2005), pp. 970--986.
9.
E. Castillo and R. Codina, Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem, Comput. Methods Appl. Mech. Engrg., 279 (2014), pp. 579--605.
10.
L. Chupin, Global strong solutions for some differential viscoelastic models, SIAM J. Appl. Math., 78 (2018), pp. 2919--2949.
11.
M. Colera, J. Carpio, and R. Bermejo, A nearly-conservative, high-order, forward Lagrange--Galerkin method for the resolution of scalar hyperbolic conservation laws, Comput. Methods Appl. Mech. Engrg., 376 (2021), 113654.
12.
M. S. Darwish, J. R. Whiteman, and M. J. Bevis, Numerical modelling of viscoelastic liquids using a finite-volume method, J. Non-Newton. Fluid Mech., 45 (1992), pp. 311--337.
13.
P. J. Dellar, Lattice Boltzmann formulation for linear viscoelastic fluids using an abstract second stress, SIAM J. Sci. Comput., 36 (2014), pp. A2507--A2532.
14.
J. Douglas, Jr. and T. F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), pp. 871--885.
15.
M. El Hadj and P. A. Tanguy, A finite element procedure coupled with the method of characteristics for simulation of viscoelastic fluid flow, J. Non-Newton. Fluid Mech., 36 (1990), pp. 333--349.
16.
V. J. Ervin and W. W. Miles, Approximation of time-dependent viscoelastic fluid flow: SUPG approximation, SIAM J. Numer. Anal., 41 (2003), pp. 457--486.
17.
J. D. Evans, H. L. França, and C. M. Oishi, Application of the natural stress formulation for solving unsteady viscoelastic contraction flows, J. Comput. Phys., 388 (2019), pp. 462--489.
18.
R. Fattal and R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation tensor, J. Non-Newton. Fluid Mech., 123 (2004), pp. 281--285.
19.
M. Fortin and A. Fortin, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newton. Fluid Mech., 32 (1989), pp. 295--310.
20.
W. Han and M. Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems, SIAM J. Numer. Anal., 38 (2000), pp. 556--579.
21.
A. Harten, On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. Numer. Anal., 21 (1984), pp. 1--23.
22.
P.-Y. Hsu, H. Notsu, and T. Yoneda, A local analysis of the axisymmetric Navier--Stokes flow near a saddle point and no-slip flat boundary, J. Fluid Mech., 794 (2016), pp. 444--459.
23.
M. A. Hulsen, R. Fattal, and R. Kupferman, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms, J. Non-Newton. Fluid Mech., 127 (2005), pp. 27--39.
24.
H. Lee, A multigrid method for viscoelastic fluid flow, SIAM J. Numer. Anal., 42 (2004), pp. 109--129.
25.
Y.-J. Lee and J. Xu, New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 1180--1206.
26.
Y.-J. Lee, J. Xu, and C.-S. Zhang, Global existence, uniqueness and optimal solvers of discretized viscoelastic flow models, Math. Models Methods Appl. Sci., 21 (2011), pp. 1713--1732.
27.
Y.-J. Lee, J. Xu, and C.-S. Zhang, Stable finite element discretizations for viscoelastic flow models, in Handbook of Numerical Analysis 16, Elsevier, Oxford, 2011, pp. 371--432.
28.
M. Lukáčová-Medviďová, H. Notsu, and B. She, Energy dissipative characteristic schemes for the diffusive Oldroyd-B viscoelastic fluid, Internat. J. Numer. Methods Fluids, 81 (2016), pp. 523--557.
29.
M. Lukáčová-Medviďová, H. Mizerová, S. Nečasová, and M. Renardy, Global existence result for the generalized Peterlin viscoelastic model, SIAM J. Math. Anal., 49 (2017), pp. 2950--2964.
30.
M. Lukáčová-Medviďová, H. Mizerová, H. Notsu, and M. Tabata, Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange--Galerkin method, Part I: A linear scheme, ESAIM: Math. Models Numer. Anal., 51 (2017), pp. 1637--1661.
31.
M. Lukáčová-Medviďová, H. Mizerová, H. Notsu, and M. Tabata, Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange--Galerkin method, Part II: A nonlinear scheme, ESAIM: Math. Models Numer. Anal., 51 (2017), pp. 1663--1689.
32.
A. Machmoum and D. Esselaoui, Finite element approximation of viscoelastic fluid flow using characteristics method, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 5603--5618.
33.
J. Málek, V. Pr\ruša, T. Skřivan, and E. Süli, Thermodynamics of viscoelastic rate-type fluids with stress diffusion, Phys. Fluids, 30 (2018), 023101.
34.
F. P. Martins, C. M. Oishi, A. M. Afonso, and M. A. Alves, A numerical study of the kernel-conformation transformation for transient viscoelastic fluid flows, J. Comput. Phys., 302 (2015), pp. 653--673.
35.
H. Notsu, H. Rui, and M. Tabata, Development and $L^2$-analysis of a single-step characteristics finite difference scheme of second-order in time for convection-diffusion problems, J. Algorithms Comput. Technol., 7 (2013), pp. 343--380.
36.
H. Notsu and M. Tabata, Error estimates of a pressure-stabilized characteristics finite element scheme for the Oseen equations, J. Sci. Comput., 65 (2015), pp. 940--955.
37.
H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange--Galerkin scheme for the Navier--Stokes equations, ESAIM: Math. Models Numer. Anal., 50 (2016), pp. 361--380.
38.
H. Notsu and M. Tabata, Stabilized Lagrange--Galerkin schemes of first- and second-order in time for the Navier--Stokes equations, in Advances in Computational Fluid-Structure Interaction and Flow Simulation, Springer, Cham, Switzerland, 2016, pp. 331--343.
39.
J. G. Oldroyd, On the formulation of rheological equations of state, Proc. A, 200 (1950), pp. 523--541.
40.
P. J. Oliveira and A. I. Miranda, A numerical study of steady and unsteady viscoelastic flow past bounded cylinders, J. Non-Newton. Fluid Mech., 127 (2005), pp. 51--66.
41.
P. J. Oliveira, F. T. Pinho, and G. A. Pinto, Numerical simulation of non-linear elastic flows with a general collocated finite-volume method, J. Non-Newton. Fluid Mech., 79 (1998), pp. 1--43.
42.
J. Petera, A new finite element scheme using the Lagrangian framework for simulation of viscoelastic fluid flows, J. Non-Newton. Fluid Mech., 103 (2002), pp. 1--43.
43.
F. Pimenta and M. A. Alves, Stabilization of an open-source finite-volume solver for viscoelastic fluid flows, J. Non-Newton. Fluid Mech., 239 (2017), pp. 85--104.
44.
O. Pironneau and M. Tabata, Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type, Internat. J. Numer. Methods Fluids, 64 (2010), pp. 1240--1253.
45.
M. Renardy, Mathematical analysis of viscoelastic flows, Annu. Rev. Fluid Mech., 21 (1989), pp. 21--36.
46.
M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions, SIAM J. Math. Anal., 22 (1991), pp. 313--327.
47.
M. Renardy, Mathematical Analysis of Viscoelastic Flows, CBMS-NSF Regional Conf. Ser. in Appl. Math. 73, SIAM, Philadelphia, 2000.
48.
H. Rui and M. Tabata, A second order characteristic finite element scheme for convection-diffusion problems, Numer. Math., 92 (2002), pp. 161--177.
49.
D. Sandri, Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds. Continuous approximation of the stress, SIAM J. Numer. Anal., 31 (1994), pp. 362--377.
50.
A. Schlichting and C. Seis, Convergence rates for upwind schemes with rough coefficients, SIAM J. Numer. Anal., 55 (2017), pp. 812--840.
51.
E. Süli, Convergence and nonlinear stability of the Lagrange--Galerkin method for the Navier--Stokes equations, Numer. Math., 53 (1988), pp. 459--483.
52.
M. Tabata, Discrepancy between theory and real computation on the stability of some finite element schemes, J. Comput. Appl. Math., 199 (2007), pp. 424--431.
53.
M. Tabata and S. Fujima, Robustness of a characteristic finite element scheme of second-order in time increment, in Computational Fluid Dynamics 2004, C. Groth and D. Zingg, eds., Springer, Berlin, 2006, pp. 177--182.
54.
M. Tabata and S. Uchiumi, A genuinely stable Lagrange--Galerkin scheme for convection-diffusion problems, Jpn. J. Ind. Appl. Math., 33 (2016), pp. 121--143.
55.
M. Tabata and S. Uchiumi, An exactly computable Lagrange--Galerkin scheme for the Navier--Stokes equations and its error estimates, Math. Comp., 87 (2018), pp. 39--67.
56.
M. F. Tomé, N. Mangiavacchi, J. A. Cuminato, A. Castelo, and S. Mckee, A finite difference technique for simulating unsteady viscoelastic free surface flows, J. Non-Newton. Fluid Mech., 106 (2002), pp. 61--106.
57.
J. Venkatesan and S. Ganesan, A three-field local projection stabilized formulation for computations of Oldroyd-B viscoelastic fluid flows, J. Non-Newton. Fluid Mech., 247 (2017), pp. 90--106.
58.
K. Walters and M. Webster, The distinctive CFD challenges of computational rheology, Internat. J. Numer. Methods Fluids, 43 (2003), pp. 577--596.
59.
J. L. White, Dynamics of viscoelastic fluids, melt fracture, and the rheology of fiber spinning, J. Appl. Polym. Sci., 8 (1964), pp. 2339--2357.
60.
H. C. Yee, G. H. Klopfer, and J.-L. Montagne, High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows, J. Comput. Phys., 88 (1990), pp. 31--61.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2955 - 2988
ISSN (online): 1095-7170

History

Submitted: 8 September 2020
Accepted: 10 September 2021
Published online: 2 December 2021

Keywords

  1. generalized Lie derivative
  2. Lagrangian scheme
  3. finite difference method

MSC codes

  1. 65M25
  2. 76A10
  3. 76M20

Authors

Affiliations

Funding Information

Center of Mathematical Sciences Applied to Industry : 2013/07375-0

Funding Information

Fundação de Amparo à Pesquisa do Estado de São Paulo https://doi.org/10.13039/501100001807 : 2013/07375-0

Funding Information

Fundação de Amparo à Pesquisa do Estado de São Paulo https://doi.org/10.13039/501100001807 : 2019/08742-2, 2017/11428-2

Funding Information

Conselho Nacional de Desenvolvimento Científico e Tecnológico https://doi.org/10.13039/501100003593 : 305383/2019-1

Funding Information

Japan Science and Technology Agency https://doi.org/10.13039/501100002241 : JP-MJPR16EA, JPMJCR2014

Funding Information

Japan Society for the Promotion of Science https://doi.org/10.13039/501100001691 : JP18H01135, JP20H01823, JP20KK0058, JP21H04431

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.