Abstract

Given a graph property \(\Phi\), the problem \(\#\text{I}{\small{\text{ND}}}\text{S}{\small{\text{UB}}}(\Phi)\) asks, on input of a graph \(G\) and a positive integer \(k\), to compute the number \(\#\textsf{IndSub}(\Phi,k\rightarrow G)\) of induced subgraphs of size \(k\) in \(G\) that satisfy \(\Phi\). The search for explicit criteria on \(\Phi\) ensuring that \(\#\text{I}{\small{\text{ND}}}\text{S}{\small{\text{UB}}}(\Phi)\) is hard was initiated by Jerrum and Meeks [J. Comput. System Sci., 81 (2015), pp. 702–716] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell, and Marx [STOC, ACM, New York, pp. 151–158] proving that a full classification into “easy” and “hard” properties is possible and some partial results on edge-monotone properties due to Meeks [Discrete Appl. Math., 198 (2016), pp. 170–194] and Dörfler et al. [MFCS, LIPIcs Leibniz Int. Proc. Inform. 138, Wadern Germany, 2019, 26], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is, subgraph-closed, properties: We show that for any nontrivial monotone property \(\Phi\), the problem \(\#\text{I}{\small{\text{ND}}}\text{S}{\small{\text{UB}}}(\Phi)\) cannot be solved in time \(f(k)\cdot \vert V(G)\vert^{o(k/\log^{1/2}(k))}\) for any function \(f\), unless the exponential time hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a \(\#\textsf{W}[1]\)-completeness result. The methods we develop for the above problem also allow us to prove a conjecture by Jerrum and Meeks [ACM Trans. Comput. Theory, 7 (2015), 11; Combinatorica 37 (2017), pp. 965–990]: \(\#\text{I}{\small{\text{ND}}}\text{S}{\small{\text{UB}}}(\Phi)\) is \(\#\textsf{W}[1]\)-complete if \(\Phi\) is a nontrivial graph property only depending on the number of edges of the graph.

Keywords

  1. counting complexity
  2. fine-grained complexity
  3. graph homomorphisms
  4. induced subgraphs
  5. parameterized complexity

MSC codes

  1. 68Q27
  2. 68Q17
  3. 05E40

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp, Biomolecular network motif counting and discovery by color coding, Bioinformatics, 24 (2008), pp. i241–i249, https://doi.org/10.1093/bioinformatics/btn163.
2.
M. Backens, A complete dichotomy for complex-valued holant\(^c\), in Proceedings of the 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic, LIPIcs Leibniz Int. Proc. Inform. 107, Wadern, Germany, 2018, 12, https://doi.org/10.4230/LIPIcs.ICALP.2018.12.
3.
M. Backens, A. Bulatov, L. A. Goldberg, C. McQuillan, and S. Zivny, Boolean approximate counting CSPs with weak conservativity, and implications for ferromagnetic two-spin, J. Comput. System Sci., 109 (2020), pp. 95–125, https://doi.org/10.1016/j.jcss.2019.12.003.
4.
L. Billera and A. Björner, Face numbers of polytopes and complexes, in Handbook of Discrete And Computational Geometry, CRC Press, Boca Raton, FL, 1997, pp. 291–310.
5.
J. Cai, Z. Fu, H. Guo, and T. Williams, A holant dichotomy: Is the FKT algorithm Universal?, in Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, IEEE, Piscataway, NJ, 2015, pp. 1259–1276, https://doi.org/10.1109/FOCS.2015.81.
6.
J. Cai, S. Huang, and P. Lu, From Holant to \#CSP and Back: Dichotomy for Holant^c problems, Algorithmica, 64 (2012), pp. 511–533, https://doi.org/10.1007/s00453-012-9626-6.
7.
J. Cai and P. Lu, Holographic algorithms: From art to science, J. Comput. System Sci., 77 (2011), pp. 41–61, https://doi.org/10.1016/j.jcss.2010.06.005.
8.
J.-Y. Cai, P. Lu, and M. Xia, Holographic algorithms with matchgates capture precisely tractable planar \#CSP, SIAM J. Comput., 46 (2017), pp. 853–889, https://doi.org/10.1137/16M1073984.
9.
J.-Y. Cai, P. Lu, and M. Xia, Dichotomy for real Holant\(^c\)problems, in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, SIAM, Philadelphia, 2018, pp. 1802–1821, https://doi.org/10.1137/1.9781611975031.118.
10.
L. S. Chandran and C. R. Subramanian, Girth and treewidth, J. Combin. Theory Ser. B, 93 (2005), pp. 23–32, https://doi.org/10.1016/j.jctb.2004.05.004.
11.
H. Chen and S. Mengel, A trichotomy in the complexity of counting answers to conjunctive queries, in Proceedings of the 18th International Conference on Database Theory, ICDT 2015, Brussels, LIPIcs Leibniz Int. Proc. Inform. 31, Wadern, Germany, pp. 110–126, https://doi.org/10.4230/LIPIcs.ICDT.2015.110.
12.
H. Chen and S. Mengel, Counting answers to existential positive queries: A complexity classification, in Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, ACM, New York, 2016, pp. 315–326, https://doi.org/10.1145/2902251.2902279.
13.
J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes, I. A. Kanj, and G. Xia, Tight lower bounds for certain parameterized NP-hard problems, Inform and Comput., 201 (2005), pp. 216–231, https://doi.org/10.1016/j.ic.2005.05.001.
14.
J. Chen, X. Huang, I. A. Kanj, and G. Xia, Strong computational lower bounds via parameterized complexity, J. Comput. System Sci., 72 (2006), pp. 1346–1367, https://doi.org/10.1016/j.jcss.2006.04.007.
15.
Z. Chen, A. Galanis, L. A. Goldberg, W. Perkins, J. Stewart, and E. Vigoda, Fast algorithms at low temperatures via Markov chains, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, Massachusetts Institute of Technology, Cambridge, MA, D. Achlioptas and L. A. Végh, eds., LIPIcs Leibniz Int. Proc. Inform. 145, Wadern, Germany, 2019, 41, https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.41.
16.
M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann. Math. (2), 164 (2006), pp. 51–229, http://www.jstor.org/stable/20159988.
17.
S. A. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, 1971, Shaker Heights, OH, ACM, New York, 1971, pp. 151–158, https://doi.org/10.1145/800157.805047.
18.
R. Curticapean, The Simple, Little and Slow Things Count: On Parameterized Counting Complexity, Ph.D. thesis, Saarland University, 2015, http://scidok.sulb.uni-saarland.de/volltexte/2015/6217/.
19.
R. Curticapean, H. Dell, F. V. Fomin, L. A. Goldberg, and J. Lapinskas, A fixed-parameter perspective on \#BIS, Algorithmica, 81 (2019), pp. 3844–3864, https://doi.org/10.1007/s00453-019-00606-4.
20.
R. Curticapean, H. Dell, and D. Marx, Homomorphisms are a good basis for counting small subgraphs, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, Canada, 2017, pp. 210–223, https://doi.org/10.1145/3055399.3055502.
21.
R. Curticapean and D. Marx, Complexity of counting subgraphs: Only the boundedness of the vertex-cover number counts, in Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, IEEE, Piscataway, NJ, 2014, pp. 130–139, https://doi.org/10.1109/FOCS.2014.22.
22.
M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, Cham, Switzerland 2015, https://doi.org/10.1007/978-3-319-21275-3.
23.
V. Dalmau and P. Jonsson, The complexity of counting homomorphisms seen from the other side, Theoret. Comput. Sci., 329 (2004), pp. 315–323, https://doi.org/10.1016/j.tcs.2004.08.008.
24.
H. Dell, M. Roth, and P. Wellnitz, Counting answers to existential questions, in Proceedings of the 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, Patras, Greece, LIPIcs Leibniz Int. Proc. Inform. 132, Wadern, Germany, 2019, 113, https://doi.org/10.4230/LIPIcs.ICALP.2019.113.
25.
J. Díaz, M. J. Serna, and D. M. Thilikos, Counting H-colorings of partial \(k\)-trees, Theoret. Comput. Sci., 281 (2002), pp. 291–309, https://doi.org/10.1016/S0304-3975(02)00017-8.
26.
J. Dörfler, M. Roth, J. Schmitt, and P. Wellnitz, Counting induced subgraphs: An algebraic approach to \#W[1]-hardness, in Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, Aachen, Germany, P. Rossmanith, P. Heggernes, and J. Katoen, eds., LIPIcs Leibniz Int. Proc. Inform. 138, Wadern, Germany, 2019, 26, https://doi.org/10.4230/LIPIcs.MFCS.2019.26.
27.
A. Durand and S. Mengel, Structural tractability of counting of solutions to conjunctive queries, Theory Comput. Syst., 57 (2015), pp. 1202–1249, https://doi.org/10.1007/s00224-014-9543-y.
28.
J. Edmonds, Paths, Trees, and Flowers, Canad. J. Math., 17 (1965), pp. 449–467, https://doi.org/10.4153/CJM-1965-045-4.
29.
P. Erdös and G. Szckeres, A Combinatorial Problem in Geometry, in Classic Papers in Combinatorics, I. Gessel and G.-C. Rota, eds., Birkhäuser Boston, Boston, 1987, pp. 49–56, https://doi.org/10.1007/978-0-8176-4842-8_3.
30.
J. Flum and M. Grohe, The parameterized complexity of counting problems, SIAM J. Comput., 33 (2004), pp. 892–922, https://doi.org/10.1137/S0097539703427203.
31.
S. Földes and P. Hammer, Split graphs, in Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Floridat Atlantic University, Boca Raton, 1977, pp. 311–315.
32.
L. A. Goldberg and M. Jerrum, Approximating pairwise correlations in the Ising model, ACM Trans. Comput. Theory, 11 (2019), pp. 23, https://doi.org/10.1145/3337785.
33.
J. A. Grochow and M. Kellis, Network motif discovery using subgraph enumeration and symmetry-breaking, in Research in Computational Molecular Biology, T. Speed and H. Huang, eds., Springer, Berlin, 2007, pp. 92–106.
34.
M. Grohe, T. Schwentick, and L. Segoufin, When is the evaluation of conjunctive queries tractable?, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, Heraklion, Greece, ACM, New York, 2001, pp. 657–666, https://doi.org/10.1145/380752.380867.
35.
S. Huang and P. Lu, A dichotomy for real weighted Holant problems, Comput. Complexity, 25 (2016), pp. 255–304, https://doi.org/10.1007/s00037-015-0118-3.
36.
R. Impagliazzo and R. Paturi, On the Complexity of \(k\)-SAT, J. Comput. System Sci., 62 (2001), pp. 367–375, https://doi.org/10.1006/jcss.2000.1727.
37.
M. Jerrum and K. Meeks, The parameterised complexity of counting connected subgraphs and graph motifs, J. Comput. System Sci., 81 (2015), pp. 702–716, https://doi.org/10.1016/j.jcss.2014.11.015.
38.
M. Jerrum and K. Meeks, Some hard families of parameterized counting problems, ACM Trans. Comput. Theory, 7 (2015), pp. 11, https://doi.org/10.1145/2786017.
39.
M. Jerrum and K. Meeks, The parameterised complexity of counting even and odd induced subgraphs, Combinatorica, 37 (2017), pp. 965–990, https://doi.org/10.1007/s00493-016-3338-5.
40.
J. Kahn, M. E. Saks, and D. Sturtevant, A topological approach to evasiveness, Combinatorica, 4 (1984), pp. 297–306, https://doi.org/10.1007/BF02579140.
41.
P. W. Kasteleyn, The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice, Physica, 27 (1961), pp. 1209–1225, https://doi.org/10.1016/0031-8914(61)90063-5.
42.
P. W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys., 4 (1963), pp. 287–293, https://doi.org/10.1063/1.1703953.
43.
S. Khot and V. Raman, Parameterized complexity of finding subgraphs with hereditary properties, Theoret. Comput. Sci., 289 (2002), pp. 997–1008, https://doi.org/10.1016/S0304-3975(01)00414-5.
44.
A. V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica, 4 (1984), pp. 307–316, https://doi.org/10.1007/BF02579141.
45.
D. Lokshtanov, D. Marx, and S. Saurabh, Lower bounds based on the Exponential Time Hypothesis, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 105 (2011), pp. 41–72, http://eatcs.org/beatcs/index.php/beatcs/article/view/92.
46.
L. Lovász, Large Networks and Graph Limits, Amer. Math. Soc. Colloq. Publ. 60, American Mathematical Society, Providence, RI, 2012, http://www.ams.org/bookstore-getitem/item=COLL-60.
47.
D. Marx, Can you beat treewidth?, Theory Comput., 6 (2010), pp. 85–112, https://doi.org/10.4086/toc.2010.v006a005.
48.
K. Meeks, The challenges of unbounded treewidth in parameterised subgraph counting problems, Discrete Appl. Math., 198 (2016), pp. 170–194, https://doi.org/10.1016/j.dam.2015.06.019.
49.
C. A. Miller, Evasiveness of graph properties and topological fixed-point theorems, Found. Trends Theor. Comput. Sci., 7 (2013), pp. 337–415, https://doi.org/10.1561/0400000055.
50.
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks, Science, 298 (2002), pp. 824–827, https://doi.org/10.1126/science.298.5594.824.
51.
G. Pólya, Bemerkung zur Interpolation und zur Näherungstheorie der Balkenbiegung, ZAMM Z. Angew. Math. Mech., 11 (1931), pp. 445–449.
52.
J. S. Provan and M. O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected, SIAM J. Comput., 12 (1983), pp. 777–788, https://doi.org/10.1137/0212053.
53.
F. P. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. (2), 30 (1930), pp. 264–286, https://doi.org/10.1112/plms/s2-30.1.264.
54.
A. L. Rosenberg, On the time required to recognize properties of graphs: A problem, ACM SIGACT News, 5 (1973), pp. 15–16, https://doi.org/10.1145/1008299.1008302.
55.
M. Roth, Counting Problems on Quantum Graphs: Parameterized and Exact Complexity Classifications, Ph.D. thesis, Saarland University, 2019, https://scidok.sulb.uni-saarland.de/bitstream/20.500.11880/27575/1/thesis.pdf.
56.
M. Roth and J. Schmitt, Counting induced subgraphs: A topological approach to \#W[1]-hardness, Algorithmica, 82 (2020), pp. 2267–2291, https://doi.org/10.1007/s00453-020-00676-9.
57.
B. Schiller, S. Jager, K. Hamacher, and T. Strufe, StreaM - a stream-based algorithm for counting motifs in dynamic graphs, in Algorithms for Computational Biology, A.-H. Dediu, F. Hernández-Quiroz, C. Martín-Vide, and D. A. Rosenblueth, eds., Springer, Cham, 2015, pp. 53–67.
58.
I. J. Schoenberg, On Hermite-Birkhoff interpolation, J. Math. Anal. Appl., 16 (1966), pp. 538–543, https://doi.org/10.1016/0022-247X(66)90160-0.
59.
F. Schreiber and H. Schwöbbermeyer, Frequency concepts and pattern detection for the analysis of motifs in networks, in Transactions on Computational Systems Biology III, C. Priami, E. Merelli, P. Gonzalez, and A. Omicini, eds., Springer, Berlin, 2005, pp. 89–104.
60.
D. Seinsche, On a property of the class of n-colorable graphs, J. Combin. Theory Ser. B, 16 (1974), pp. 191–193, https://doi.org/10.1016/0095-8956(74)90063-X.
61.
J. Spencer, Ramsey's theorem–a new lower bound, J. Combin. Theory Ser. A, 18 (1975), pp. 108–115, https://doi.org/10.1016/0097-3165(75)90071-0.
62.
H. N. V. Temperley and M. E. Fisher, Dimer problem in statistical mechanics-an exact result, Philos. Mag., 6 (1961), pp. 1061–1063, https://doi.org/10.1080/14786436108243366.
63.
A. Thomason, The extremal function for complete minors, J. Combin., Theory Ser. B, 81 (2001), pp. 318–338, https://doi.org/10.1006/jctb.2000.2013.
64.
S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991), pp. 865–877, https://doi.org/10.1137/0220053.
65.
J. R. Ullmann, An algorithm for subgraph isomorphism, J. ACM, 23 (1976), pp. 31–42, https://doi.org/10.1145/321921.321925, http://doi.acm.org/10.1145/321921.321925.
66.
L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979), pp. 189–201, https://doi.org/10.1016/0304-3975(79)90044-6.
67.
L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., 8 (1979), pp. 410–421, https://doi.org/10.1137/0208032.
68.
L. G. Valiant, Holographic algorithms, SIAM J. Comput., 37 (2008), pp. 1565–1594, https://doi.org/10.1137/070682575.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: FOCS20-139 - FOCS20-174
ISSN (online): 1095-7111

History

Submitted: 8 September 2020
Accepted: 3 November 2021
Published online: 11 April 2022

Keywords

  1. counting complexity
  2. fine-grained complexity
  3. graph homomorphisms
  4. induced subgraphs
  5. parameterized complexity

MSC codes

  1. 68Q27
  2. 68Q17
  3. 05E40

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media