Convergence of Dziuk's Semidiscrete Finite Element Method for Mean Curvature Flow of Closed Surfaces with High-order Finite Elements

This article has been corrected.
VIEW CORRECTION

Abstract

Dziuk's surface finite element method (FEM) for mean curvature flow has had a significant impact on the development of parametric and evolving surface FEMs for surface evolution equations and curvature flows. However, the convergence of Dziuk's surface FEM for mean curvature flow of closed surfaces still remains open since it was proposed in 1990. In this article, we prove convergence of Dziuk's semidiscrete surface FEM with high-order finite elements for mean curvature flow of closed surfaces. The proof utilizes the matrix-vector formulation of evolving surface FEMs and a monotone structure of the nonlinear discrete surface Laplacian proved in this paper.

Keywords

  1. mean curvature flow
  2. evolving surface
  3. finite element method
  4. convergence
  5. error estimate

MSC codes

  1. 65M15
  2. 65M60
  3. 49M10
  4. 35K65

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. W. Barrett, K. Deckelnick, and R. Nürnberg, A Finite Element Error Analysis for Axisymmetric Mean Curvature Flow, preprint, arXiv:1911.05398, 2019.
2.
J. W. Barrett, K. Deckelnick, and V. Styles, Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve, SIAM J. Numer. Anal., 55 (2017), pp. 1080--1100.
3.
J. W. Barrett, H. Garcke, and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in $\R^3$, J. Comput. Phys., 227 (2008), pp. 4281--4307.
4.
J. W. Barrett, H. Garcke, and R. Nürnberg, Numerical approximation of gradient flows for closed curves in $\mathbb{R}^d$, IMA J. Numer. Anal., 30 (2010), pp. 4--60.
5.
K. Deckelnick and G. Dziuk, Convergence of a finite element method for non-parametric mean curvature flow, Numer. Math., 72 (1995), pp. 197--222.
6.
K. Deckelnick and G. Dziuk, On the approximation of the curve shortening flow, in Calculus of Variations, Applications and Computations (Pont-à-Mousson, 1994), Pitman Res. Notes Math. Ser. 326, Longman Scientific and Technical, Harlow, UK, 1995, pp. 100--108.
7.
K. Deckelnick and G. Dziuk, Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs, Interfaces Free Bound., 2 (2000), pp. 341--359.
8.
K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer., 14 (2005), pp. 139--232.
9.
A. Demlow, Higher--order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal., 47 (2009), pp. 805--807.
10.
P. Doktor, Approximation of domains with Lipschitzian boundary, C̆asopis pro péstování matematiky, 101 (1976), pp. 237--255.
11.
G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer-Verlag, Berlin, 1988, pp. 142--155.
12.
G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1990), pp. 603--611.
13.
G. Dziuk, Convergence of a semi-discrete scheme for the curve shortening flow, Math. Models Methods Appl. Sci., 4 (1994), pp. 589--606.
14.
G. Dziuk, Discrete anisotropic curve shortening flow, SIAM J. Numer. Anal., 36 (1999), pp. 1808--1830.
15.
G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal., 27 (2007), pp. 262--292.
16.
G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numer., 22 (2013), pp. 289--396.
17.
G. Dziuk and C. M. Elliott, $L^2$-estimates for the evolving surface finite element method, Math. Comp., 82 (2013), pp. 1--24.
18.
G. Dziuk, D. Kröner, and T. Müller, Scalar conservation laws on moving hypersurfaces, Interfaces Free Bound., 15 (2013), pp. 203--236.
19.
K. Ecker, Regularity Theory for Mean Curvature Flow, Springer-Verlag, Berlin, 2012.
20.
C. M. Elliott and H. Fritz, On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick, IMA J. Numer. Anal., 37 (2017), pp. 543--603.
21.
B. Kovács, High-order evolving surface finite element method for parabolic problems on evolving surfaces, IMA J. Numer. Anal., 38 (2018), pp. 430--459.
22.
B. Kovács, B. Li, and C. Lubich, A convergent evolving finite element algorithm for mean curvature flow of closed surfaces, Numer. Math., 143 (2019), pp. 797--853.
23.
B. Kovács, B. Li, C. Lubich, and C. Power Guerra, Convergence of finite elements on an evolving surface driven by diffusion on the surface, Numer. Math., 137 (2017), pp. 643--689.
24.
B. Li, Convergence of Dziuk's linearly implicit parametric finite element method for curve shortening flow, SIAM J. Numer. Anal., 58 (2020), pp. 2315--2333.
25.
P. Pozzi, Anisotropic curve shortening flow in higher codimension, Math. Methods Appl. Sci., 30 (2007), pp. 1243--1281.
26.
P. Pozzi and B. Stinner, Curve shortening flow coupled to lateral diffusion, Numer. Math., 135 (2017), pp. 1171--1205.
27.
R. Rusu, Numerische analysis für den Krümmungsfluß und den Willmorefluß, Ph.D. Thesis, University of Freiburg, Freiburg, Germany, 2006.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1592 - 1617
ISSN (online): 1095-7170

History

Submitted: 25 September 2020
Accepted: 16 March 2021
Published online: 9 June 2021

Keywords

  1. mean curvature flow
  2. evolving surface
  3. finite element method
  4. convergence
  5. error estimate

MSC codes

  1. 65M15
  2. 65M60
  3. 49M10
  4. 35K65

Authors

Affiliations

Funding Information

Hong Kong Research Grants Council : 15300920

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media