Abstract

We investigate to which extent the relevant features of (static) Systemic Risk Measures can be extended to a conditional setting. After providing a general dual representation result, we analyze in greater detail Conditional Shortfall Systemic Risk Measures. In the particular case of exponential preferences, we provide explicit formulas that also allow us to show a time consistency property. Finally, we provide an interpretation of the allocations associated to Conditional Shortfall Systemic Risk Measures as suitably defined equilibria. Conceptually, the generalization from static to conditional Systemic Risk Measures can be achieved in a natural way, even though the proofs become more technical than in the unconditional framework.

Keywords

  1. conditional risk
  2. systemic risk
  3. conditional equilibrium
  4. dynamic risk measures

MSC codes

  1. 91G05
  2. 91B05
  3. 91G15
  4. 60G99

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
V. V. Acharya, L. H. Pedersen, T. Philippon, and M. Richardson, Measuring Systemic Risk, Rev. Financial Stud., 30 (2016), pp. 2--47, https://doi.org/10.1093/rfs/hhw088.
2.
T. Adrian and M. K. Brunnermeier, CoVar, Amer. Econom. Rev., 106 (2016), pp. 1705--1741.
3.
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, 3rd ed., Springer, Berlin, 2006.
4.
C. Ararat and B. Rudloff, Dual representations for systemic risk measures, Math. Financ. Econ., 14 (2020), pp. 139--174, https://doi.org/10.1007/s11579-019-00249-7.
5.
M. Arduca, P. Koch-Medina, and C. Munari, Dual representations for systemic risk measures based on acceptance sets, Math. Financ. Econ., 15 (2021), pp. 155--184, https://doi.org/10.1007/s11579-019-00250-0.
6.
Y. Armenti, S. Crépey, S. Drapeau, and A. Papapantoleon, Multivariate shortfall risk allocation and systemic risk, SIAM J. Financial Math., 9 (2018), pp. 90--126, https://doi.org/10.1137/16M1087357.
7.
P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, Coherent measures of risk, Math. Finance, 9 (1999), pp. 203--228, https://doi.org/10.1111/1467-9965.00068.
8.
P. Barrieu and N. El Karoui, Pricing, hedging and optimally designing derivatives via minimization of risk measures, in Volume on Indifference Pricing, Princeton University Press, Princeton, NJ, 2005, pp. 144--172.
9.
H. Bauer, Measure and Integration Theory, De Gruyter Stud. Math. 26, Walter de Gruyter & Co., Berlin, 2001, https://doi.org/10.1515/9783110866209.
10.
F. Biagini, A. Doldi, J.-P. Fouque, M. Frittelli, and T. Meyer-Brandis, Systemic optimal risk transfer equilibrium, Math. Financ. Econ., 15 (2021), pp. 233--274, https://doi.org/10.1007/s11579-020-00277-8.
11.
F. Biagini, J.-P. Fouque, M. Frittelli, and T. Meyer-Brandis, A unified approach to systemic risk measures via acceptance sets, Math. Finance, 29 (2019), pp. 329--367, https://doi.org/10.1111/mafi.12170.
12.
F. Biagini, J.-P. Fouque, M. Frittelli, and T. Meyer-Brandis, On fairness of systemic risk measures, Finance Stoch., 24 (2020), pp. 513--564, https://doi.org/10.1007/s00780-020-00417-4.
13.
S. Biagini and M. Frittelli, On the extension of the Namioka-Klee theorem and on the Fatou property for risk measures, in Optimality and Risk---Modern Trends in Mathematical Finance, Springer, Berlin, 2009, pp. 1--28, https://doi.org/10.1007/978-3-642-02608-9_1.
14.
J. Bion-Nadal, Dynamic risk measures: Time consistency and risk measures from BMO martingales, Finance Stoch., 12 (2008), pp. 219--244, https://doi.org/10.1007/s00780-007-0057-1.
15.
M. K. Brunnermeier and P. Cheridito, Measuring and allocating systemic risk, Risks, 7 (2019), pp. 1--19, https://ideas.repec.org/a/gam/jrisks/v7y2019i2p46-d226193.html.
16.
L. Campi and M. P. Owen, Multivariate utility maximization with proportional transaction costs, Finance Stoch., 15 (2011), pp. 461--499, https://doi.org/10.1007/s00780-010-0125-9.
17.
M. Carl and A. Jamneshan, A transfer principle for second-order arithmetic, and applications, J. Log. Anal., 10 (2018), 8, https://doi.org/10.4115/jla.2018.10.8.
18.
C. Chen, G. Iyengar, and C. C. Moallemi, An axiomatic approach to systemic risk, Management Sci., 59 (2013), pp. 1373--1388, https://doi.org/10.1287/mnsc.1120.1631.
19.
Y. Chen and Y. Hu, Time consistency for set-valued dynamic risk measures for bounded discrete-time processes, Math. Financ. Econ., 12 (2018), pp. 305--333, https://doi.org/10.1007/s11579-017-0205-0.
20.
F. Delbaen, S. Peng, and E. Rosazza Gianin, Representation of the penalty term of dynamic concave utilities, Finance Stoch., 14 (2010), pp. 449--472, https://doi.org/10.1007/s00780-009-0119-7.
21.
K. Detlefsen and G. Scandolo, Conditional and dynamic convex risk measures, Finance Stoch., 9 (2005), pp. 539--561, https://doi.org/10.1007/s00780-005-0159-6.
22.
A. Doldi, Equilibrium, Systemic Risk Measures and Optimal Transport: A Convex Duality Approach, Doctoral Thesis, Università degli Studi de Milano, Milan, Italy, 2021; available at https://air.unimi.it/.
23.
A. Doldi and M. Frittelli, Multivariate Systemic Optimal Risk Transfer Equilibrium, preprint, https://arxiv.org/abs/1912.12226v3, 2021.
24.
S. Drapeau, A. Jamneshan, M. Karliczek, and M. Kupper, The algebra of conditional sets and the concepts of conditional topology and compactness, J. Math. Anal. Appl., 437 (2016), pp. 561--589, https://doi.org/10.1016/j.jmaa.2015.11.057.
25.
S. Drapeau, A. Jamneshan, and M. Kupper, A Fenchel-Moreau theorem for $\overline L^0$-valued functions, J. Convex Anal., 26 (2019), pp. 593--603.
26.
G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes, Encyclopedia Math. Appl. 47, Cambridge University Press, Cambridge, UK, 1992, https://doi.org/10.1017/CBO9780511574740.
27.
Z. Feinstein and B. Rudloff, Time consistency of dynamic risk measures in markets with transaction costs, Quant. Finance, 13 (2013), pp. 1473--1489, https://doi.org/10.1080/14697688.2013.781668.
28.
Z. Feinstein and B. Rudloff, A comparison of techniques for dynamic multivariate risk measures, in Set Optimization and Applications---The State of the Art, Springer Proc. Math. Stat. 151, Springer, Heidelberg, 2015, pp. 3--41, https://doi.org/10.1007/978-3-662-48670-2_1.
29.
Z. Feinstein and B. Rudloff, Multi-portfolio time consistency for set-valued convex and coherent risk measures, Finance Stoch., 19 (2015), pp. 67--107, https://doi.org/10.1007/s00780-014-0247-6.
30.
Z. Feinstein and B. Rudloff, A recursive algorithm for multivariate risk measures and a set-valued Bellman's principle, J. Global Optim., 68 (2017), pp. 47--69, https://doi.org/10.1007/s10898-016-0459-8.
31.
Z. Feinstein and B. Rudloff, Time Consistency for Scalar Multivariate Risk Measures, preprint, https://arxiv.org/abs/1810.04978v4, 2021.
32.
Z. Feinstein, B. Rudloff, and S. Weber, Measures of systemic risk, SIAM J. Financial Math., 8 (2017), pp. 672--708, https://doi.org/10.1137/16M1066087.
33.
D. Filipović, M. Kupper, and N. Vogelpoth, Separation and duality in locally $L^0$-convex modules, J. Funct. Anal., 256 (2009), pp. 3996--4029, https://doi.org/10.1016/j.jfa.2008.11.015.
34.
D. Filipović, M. Kupper, and N. Vogelpoth, Approaches to conditional risk, SIAM J. Financial Math., 3 (2012), pp. 402--432, https://doi.org/10.1137/090773076.
35.
H. Föllmer, Spatial risk measures and their local specification: The locally law-invariant case, Stat. Risk Model., 31 (2014), pp. 79--101, https://doi.org/10.1515/strm-2013-5001.
36.
H. Föllmer and C. Klüppelberg, Spatial risk measures: Local specification and boundary risk, in Stochastic Analysis and Applications 2014, Springer Proc. Math. Stat. 100, Springer, Cham, 2014, pp. 307--326, https://doi.org/10.1007/978-3-319-11292-3_11.
37.
H. Föllmer and A. Schied, Convex measures of risk and trading constraints, Finance Stoch., 6 (2002), pp. 429--447, https://doi.org/10.1007/s007800200072.
38.
H. Föllmer and A. Schied, Stochastic Finance. An Introduction in Discrete Time, 4th revised and extended ed., De Gruyter Grad., De Gruyter, Berlin, 2016, https://doi.org/10.1515/9783110463453.
39.
M. Frittelli and M. Maggis, Dual representation of quasi-convex conditional maps, SIAM J. Financial Math., 2 (2011), pp. 357--382, https://doi.org/10.1137/09078033X.
40.
M. Frittelli and M. Maggis, Complete duality for quasiconvex dynamic risk measures on modules of the $L^p$-type, Stat. Risk Model., 31 (2014), pp. 103--128, https://doi.org/10.1515/strm-2013-1163.
41.
M. Frittelli and M. Maggis, Conditionally evenly convex sets and evenly quasi-convex maps, J. Math. Anal. Appl., 413 (2014), pp. 169--184, https://doi.org/10.1016/j.jmaa.2013.11.044.
42.
M. Frittelli and E. Rosazza Gianin, Putting order in risk measures, J. Banking & Finance, 26 (2002), pp. 1473--1486, https://doi.org/10.1016/S0378-4266(02)00270-4.
43.
M. Frittelli and G. Scandolo, Risk measures and capital requirements for processes, Math. Finance, 16 (2006), pp. 589--612, https://doi.org/10.1111/j.1467-9965.2006.00285.x.
44.
T. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal., 258 (2010), pp. 3024--3047, https://doi.org/10.1016/j.jfa.2010.02.002.
45.
H. Hoffmann, T. Meyer-Brandis, and G. Svindland, Risk-consistent conditional systemic risk measures, Stochastic Process. Appl., 126 (2016), pp. 2014--2037, https://doi.org/10.1016/j.spa.2016.01.002.
46.
H. Hoffmann, T. Meyer-Brandis, and G. Svindland, Strongly consistent multivariate conditional risk measures, Math. Financ. Econ., 12 (2018), pp. 413--444, https://doi.org/10.1007/s11579-017-0210-3.
47.
X. Huang, H. Zhou, and H. Zhu, A framework for assessing the systemic risk of major financial institutions, J. Banking & Finance, 33 (2009), pp. 2036--2049, https://doi.org/10.1016/j.jbankfin.2009.05.017.
48.
E. Kromer, L. Overbeck, and K. Zilch, Systemic risk measures on general measurable spaces, Math. Methods Oper. Res., 84 (2016), pp. 323--357, https://doi.org/10.1007/s00186-016-0545-1.
49.
E. Kromer, L. Overbeck, and K. Zilch, Dynamic systemic risk measures for bounded discrete time processes, Math. Methods Oper. Res., 90 (2019), pp. 77--108, https://doi.org/10.1007/s00186-018-0655-z.
50.
A. Lehar, Measuring systemic risk: A risk management approach, J. Banking & Finance, 29 (2005), pp. 2577--2603.
51.
J. Orihuela and J. M. Zapata, A Note on Conditional Risk Measures of Orlicz Spaces and Orlicz-Type Modules, preprint, https://arxiv.org/abs/1612.03680, 2016.
52.
S. Peng, Nonlinear expectations, nonlinear evaluations and risk measures, in Stochastic Methods in Finance, Lecture Notes in Math. 1856, Springer, Berlin, 2004, pp. 165--253, https://doi.org/10.1007/978-3-540-44644-6_4.
53.
M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math. 146, Marcel Dekker, Inc., New York, 1991.
54.
F. Riedel, Dynamic coherent risk measures, Stochastic Process. Appl., 112 (2004), pp. 185--200, https://doi.org/10.1016/j.spa.2004.03.004.
55.
B. Roorda and J. M. Schumacher, Time consistency conditions for acceptability measures, with an application to Tail Value at Risk, Insurance Math. Econom., 40 (2007), pp. 209--230, https://doi.org/10.1016/j.insmatheco.2006.04.003.
56.
B. Roorda and J. M. Schumacher, Membership conditions for consistent families of monetary valuations, Stat. Risk Model., 30 (2013), pp. 255--280, https://doi.org/10.1524/strm.2013.1131.
57.
B. Roorda and J. M. Schumacher, Weakly time consistent concave valuations and their dual representations, Finance Stoch., 20 (2016), pp. 123--151, https://doi.org/10.1007/s00780-015-0285-8.
58.
E. Rosazza Gianin, Risk measures via $g$-expectations, Insurance Math. Econom., 39 (2006), pp. 19--34, https://doi.org/10.1016/j.insmatheco.2006.01.002.
59.
I. B. Tahar and E. Lépinette, Vector-valued coherent risk measure processes, Int. J. Theor. Appl. Finance, 17 (2014), 1450011, https://doi.org/10.1142/S0219024914500113.
60.
S. Tutsch, Update rules for convex risk measures, Quant. Finance, 8 (2008), pp. 833--843, https://doi.org/10.1080/14697680802055960.
61.
S. Weber, Distribution-invariant risk measures, information, and dynamic consistency, Math. Finance, 16 (2006), pp. 419--441, https://doi.org/10.1111/j.1467-9965.2006.00277.x.

Information & Authors

Information

Published In

cover image SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics
Pages: 1459 - 1507
ISSN (online): 1945-497X

History

Submitted: 21 October 2020
Accepted: 12 August 2021
Published online: 16 November 2021

Keywords

  1. conditional risk
  2. systemic risk
  3. conditional equilibrium
  4. dynamic risk measures

MSC codes

  1. 91G05
  2. 91B05
  3. 91G15
  4. 60G99

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media