Abstract

This paper presents a recently developed particle simulation code package PIFE-PIC, which is a novel three-dimensional (3-D) parallel immersed finite element (IFE) particle-in-cell (PIC) simulation model for particle simulations of plasma-material interactions. This framework is based on the recently developed nonhomogeneous electrostatic IFE-PIC algorithm, which is designed to handle complex plasma-material interface conditions associated with irregular geometries using a Cartesian mesh-based PIC. Three-dimensional domain decomposition is utilized for both the electrostatic field solver with IFE and the particle operations in PIC to distribute the computation among multiple processors. A simulation of the orbital motion-limited (OML) sheath of a dielectric sphere immersed in a stationary plasma is carried out to validate parallel IFE-PIC and profile the parallel performance of the code package. Furthermore, a large-scale simulation of plasma charging at a lunar crater containing 2 million PIC cells (10 million FE/IFE cells) and about 1 billion particles, running for 20,000 PIC steps in about 154 wall-clock hours, is presented to demonstrate the high-performance computing capability of PIFE-PIC.

Keywords

  1. immersed finite element
  2. particle-in-cell
  3. parallel domain decomposition
  4. plasma-material interactions

MSC codes

  1. 35R05
  2. 65N30
  3. 65Y05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Adjerid, N. Chaabane, T. Lin, and P. Yue, An immersed discontinuous finite element method for the Stokes problem with a moving interface, J. Comput. Appl. Math., 362 (2019), pp. 540--559.
2.
S. Adjerid and T. Lin, $p$-th degree immersed finite element for boundary value problems with discontinuous coefficients, Appl. Numer. Math, 59 (2009), pp. 1303--1321.
3.
S. Adjerid, T. Lin, and Q. Zhuang, Error estimates for an immersed finite element method for second order hyperbolic equations in inhomogeneous media, J. Sci. Comput., 84 (2020), p. 35.
4.
S. Adjerid and K. Moon, An immersed discontinuous Galerkin method for acoustic wave propagation in inhomogeneous media, SIAM J. Sci. Comput., 41 (2019), pp. A139--A162.
5.
J. Bai, Y. Cao, Y. Chu, and X. Zhang, An improved immersed finite element particle-in-cell method for plasma simulation, Comput. Math. Appl., 75 (2018), pp. 1887--1899.
6.
J. Bai, Y. Cao, X.-M. He, and P. E, An implicit particle-in-cell model based on anisotropic immersed-finite-element method, Comput. Phys. Commun., 261 (2021), 107655.
7.
J. Bai, Y. Cao, X.-M. He, H. Liu, and X. Yang, Modeling and an immersed finite element method for an interface wave equation, Comput. Math. Appl., 76 (2018), p. 1625--1638.
8.
B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, 1996.
9.
O. E. Berg, A lunar terminator configuration, Earth Planet. Sci. Lett., 39 (1978), pp. 377--381.
10.
O. E. Berg, F. F. Richardson, and H. Burton, Apollo 17 preliminary science report, Technical Report NASA SP-330, National Aeronautics and Space Administration, 1973.
11.
C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (Series in Plasma Physics), Institute of Physics Publishing, Bristol, UK, 1991.
12.
B. Camp, T. Lin, Y. Lin, and W. Sun, Quadratic immersed finite element spaces and their approximation capabilities, Adv. Comput. Math., 24 (2006), pp. 81--112.
13.
H. Cao, Y. Cao, Y. Chu, X.-M. He, and T. Lin, A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), pp. 132--148.
14.
W. Cao, X. Zhang, and Z. Zhang, Superconvergence of immersed finite element methods for interface problems, Adv. Comput. Math., 43 (2017), pp. 795--821.
15.
Y. Cao, Y. Chu, X.-M. He, and T. Lin, An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity, J. Comput. Phys., 281 (2015), pp. 82--95.
16.
Y. Cao, Y. Chu, X. Zhang, and X. Zhang, Immersed finite element methods for unbounded interface problems with periodic structures, J. Comput. Appl. Math., 307 (2016), pp. 72--81.
17.
Y. Chu, Y. Cao, X.-M. He, and M. Luo, Asymptotic boundary conditions with immersed finite elements for interface magnetostatic/electrostatic field problems with open boundary, Comput. Phys. Commun., 182 (2011), pp. 2331--2338.
18.
Y. Chu, D. Han, Y. Cao, X.-M. He, and J. Wang, An immersed-finite-element particle-in-cell simulation tool for plasma surface interaction, Int. J. Numer. Anal. Model., 14 (2017), pp. 175--200.
19.
G. L. Delzanno and X.-Z. Tang, Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations, Phys. Plasmas, 22 (2015), 113703.
20.
D. Depew, D. Han, J. Wang, X.-M. He, and T. Lin, Immersed-Finite-Element Particle-In-Cell simulations of lunar surface charging, \#199, Proceedings of the 13th Spacecraft Charging Technology Conference, Pasadena, California, June 23-27, 2014.
21.
R. E. Ewing, Z. Li, T. Lin, and Y. Lin, The immersed finite volume element methods for the elliptic interface problems. Modelling '98 (Prague), Math. Comput. Simulation, 50 (1999), pp. 63--76.
22.
W. Feng, X.-M. He, Y. Lin, and X. Zhang, Immersed finite element method for interface problems with algebraic multigrid solver, Commun. Comput. Phys., 15 (2014), pp. 1045--1067.
23.
J. W. Freeman and M. Ibrahim, Lunar electric fields, surface potential and associated plasma sheaths, The Moon, 14 (1975), pp. 103--114.
24.
Y. Gong, B. Li, and Z. Li, Immersed-interface finite-element methods for elliptic interface problems with non-homogeneous jump conditions, SIAM J. Numer. Anal., 46 (2008), pp. 472--495.
25.
R. Guo and T. Lin, A group of immersed finite-element spaces for elliptic interface problems, IMA J. Numer. Anal., 39 (2019), pp. 482--511.
26.
R. Guo and T. Lin, A higher degree immersed finite element method based on a Cauchy extension for elliptic interface problems, SIAM J. Numer. Anal., 57 (2019), pp. 1545--1573.
27.
R. Guo and T. Lin, An immersed finite element method for elliptic interface problems in three dimensions, J. Comput. Phys., 414 (2020), 109478.
28.
R. Guo, T. Lin, and Y. Lin, Error estimates for a partially penalized immersed finite element method for elasticity interface problems, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 1--24.
29.
R. Guo, T. Lin, and Q. Zhuang, Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems, Int. J. Numer. Anal. Mod., 16 (2019), pp. 575--589.
30.
R. Guo and X. Zhang, Solving three-dimensional interface problems with immersed finite elements: A-priori error analysis, J. Comput. Phys., 441 (2021), 110445.
31.
J. Guzmán, M. A. Sánchez, and M. Sarkis, Higher-order finite element methods for elliptic problems with interfaces, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1561--1583.
32.
J. S. Halekas, G. T. Delory, D. A. Brain, R. P. Lin, M. O. Fillingim, C. O. Lee, R. A. Mewaldt, T. J. Stubbs, W. M. Farrell, and M. K. Hudson, Extreme lunar surface charging during solar energetic particle events, Geophys. Res. Lett., 34 (2007), L02111.
33.
J. S. Halekas, G. T. Delory, R. P. Lin, T. J. Stubbs, and W. M. Farrell, Lunar prospector observations of the electrostatic potential of the lunar surface and its response to incident currents, J. Geophys. Res., 113 (2008), A09102.
34.
J. S. Halekas, Y. Saito, G. T. Delory, and W. M. Farrell, New views of the lunar plasma environment, Planet. Space Sci., 59 (2011), pp. 1681--1694.
35.
D. Han, Particle-in-Cell Simulations of Plasma Interactions with Asteroidal and Lunar Surfaces, PhD thesis, University of Southern California, 2015.
36.
D. Han and J. Wang, 3-D fully-kinetic particle-in-cell simulations of small asteroid charging in the solar wind, IEEE Trans. Plasma Sci., 47 (2019), pp. 3682--3688.
37.
D. Han, J. Wang, and X.-M. He, A non-homogeneous immersed-finite-element particle-in-cell method for modeling dielectric surface charging in plasmas, IEEE Trans. Plasma Sci., 44 (2016), pp. 1326--1332.
38.
D. Han, J. Wang, and X.-M. He, Immersed-finite-element particle-in-cell simulations of plasma charging at lunar terminator, J. Spacecraft Rockets, 55 (2018), pp. 1490--1497.
39.
D. Han, P. Wang, X.-M. He, T. Lin, and J. Wang, A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions, J. Comput. Phys., 321 (2016), pp. 965--980.
40.
C. He and X. Zhang, Residual-based a posteriori error estimation for immersed finite element methods, J. Sci. Comput., 81 (2019), pp. 2051--2079.
41.
X.-M. He, Bilinear immersed finite elements for interface problems, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, (2009).
42.
X.-M. He, T. Lin, and Y. Lin, Approximation capability of a bilinear immersed finite element space, Numer. Methods Partial Differential Equations, 24 (2008), pp. 1265--1300.
43.
X.-M. He, T. Lin, and Y. Lin, A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficients, dedicated to Richard E. Ewing on the occasion of his 60th birthday, Commun. Comput. Phys., 6 (2009), pp. 185--202.
44.
X.-M. He, T. Lin, and Y. Lin, Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient, dedicated to David Russell's 70th birthday, J. Syst. Sci. Complex., 23 (2010), pp. 467--483.
45.
X.-M. He, T. Lin, and Y. Lin, Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8 (2011), pp. 284--301.
46.
X.-M. He, T. Lin, and Y. Lin, The convergence of the bilinear and linear immersed finite element solutions to interface problems, Numer. Methods Partial Differential Equations, 28 (2012), pp. 312--330.
47.
X.-M. He, T. Lin, and Y. Lin, A selective immersed discontinuous Galerkin method for elliptic interface problems, Math. Methods Appl. Sci., 37 (2014), pp. 983--1002.
48.
X.-M. He, T. Lin, Y. Lin, and X. Zhang, Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differential Equations, 29 (2013), pp. 619--646.
49.
G. H. Heiken, D. T. Vaniman, and B. M. French, Lunar Sourcebook: A User's Guide to the Moon, Cambridge University Press, Cambridge, 1991.
50.
R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Adam Hilger, London, 1988.
51.
J. D. Jackson, Classical electrodynamics, 3rd ed., Wiley, New York, 1999.
52.
H. Jian, Y. Chu, H. Cao, Y. Cao, X.-M. He, and G. Xia, Three-dimensional IFE-PIC numerical simulation of background pressure's effect on accelerator grid impingement current for ion optics, Vacuum, 116 (2015), pp. 130--138.
53.
R. Kafafy, T. Lin, Y. Lin, and J. Wang, Three-dimensional immersed finite element methods for electric field simulation in composite materials, Int. J. Numer. Meth. Engrg., 64 (2005), pp. 940--972.
54.
R. Kafafy and J. Wang, Whole subscale ion optics simulation: Direct ion impingement and electron backstreaming, in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2005-3691, Tucson, Arizona, July 2005.
55.
R. Kafafy and J. Wang, Whole ion optics gridlet simulations using a hybrid-grid immersed-finite-element particle-in-cell code, J. Propul. Power, 23 (2007), pp. 59--68.
56.
R. I. Kafafy and J. Wang, A hybrid grid immersed finite element particle-in-cell algorithm for modeling spacecraft-plasma interactions, IEEE Trans. Plasma Sci., 34 (2006), pp. 2114--2124.
57.
D. Kwak, S. Jin, and D. Kyeong, A stabilized P1-nonconforming immersed finite element method for the interface elasticity problems, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 187--207.
58.
Z. Li, The immersed interface method using a finite element formulation, Appl. Numer. Math., 27 (1998), pp. 253--267.
59.
Z. Li, T. Lin, Y. Lin, and R. C. Rogers, An immersed finite element space and its approximation capability, Numer. Methods Partial Differential Equations, 20 (2004), pp. 338--367.
60.
Z. Li, T. Lin, and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96 (2003), pp. 61--98.
61.
T. Lin, Y. Lin, and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53 (2015), pp. 1121--1144.
62.
T. Lin, D. Sheen, and X. Zhang, A locking-free immersed finite element method for planar elasticity interface problems, J. Comput. Phys., 247 (2013), pp. 228--247.
63.
T. Lin, D. Sheen, and X. Zhang, A nonconforming immersed finite element method for elliptic interface problems, J. Sci. Comput., 79 (2019), pp. 442--463.
64.
T. Lin, Q. Yang, and X. Zhang, A priori error estimates for some discontinuous Galerkin immersed finite element methods, J. Sci. Comput., 65 (2015), pp. 875--894.
65.
C. Lu, J. Wan, Y. Cao, and X.-M. He, A fully decoupled iterative method with three-dimensional anisotropic immersed finite elements for Kaufman-type discharge problems, Comput. Meth. Appl. Mech. Eng., 372 (2020), 113345.
66.
C. Lu, Z. Yang, J. Bai, Y. Cao, and X.-M. He, Three-dimensional immersed finite element method for anisotropic magnetostatic/electrostatic interface problems with non-homogeneous flux jump, Int. J. Numer. Meth. Eng., 121 (2020), pp. 2107--2127.
67.
D. Lund, J. Zhao, A. Lamb, and D. Han, Fully Kinetic PIFE-PIC Simulations of Plasma Charging at Lunar Craters, in AIAA SciTech 2020, AIAA 2020-1549, Orlando, Florida, January 6-10, 2020.
68.
D. S. McKay, G. Heiken, A. Basu, G. Blanford, S. Simon, R. Reedy, B. M. French, and J. Papike, Chapter 7: The lunar regolith, in Lunar Sourcebook: A User's Guide to the Moon, Cambridge University Press, Cambridge, 1991, pp. 285--356.
69.
NASA-JPL, Moon Trek, trek, http://nasa.gov/moon (15 July 2020).
70.
A. R. Poppe, M. Piquette, A. Likhanskii, and M. Horányi, The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport, Icarus, 221 (2012), pp. 135--146.
71.
T. Preusser, M. Rumpf, S. Sauter, and L. O. Schwen, 3D composite finite elements for elliptic boundary value problems with discontinuous coefficients, SIAM J. Sci. Comput., 33 (2011), pp. 2115--2143.
72.
D. L. Reasoner and W. J. Burke, Characteristics of the lunar photoelectron layer in the geomagnetic tail, J. Geophys. Res., 77 (1972), pp. 6671--6687.
73.
Y. G. Shkuratov and N. V. Bondarenko, Regolith layer thickness mapping of the moon by radar and optical data, Icarus, 149 (2001), pp. 329--338.
74.
T. J. Stubbs, J. S. Halekas, W. M. Farrell, and R. R. Vondrak, Lunar surface charging: A global perspective using lunar prospector data, in Workshop on Dust in Planetary Systems (ESA SP-643), H. Krueger and A. Graps, eds., Kauai, Hawaii, USA, September 26-30, 2005, pp. 181--184.
75.
X.-Z. Tang and G. L. Delzanno, Orbital-motion-limited theory of dust charging and plasma response, Phys. Plasmas, 21 (2014), p. 123708.
76.
D. Han and J. Wang, Simulations of Ion Thruster Plume Contamination with A Whole Grid Sputtered Mo Source Model, in 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2013-3888, San Jose, California, July 14 - 17, 2013.
77.
S. Vallaghè and T. Papadopoulo, A trilinear immersed finite element method for solving the electroencephalography forward problem, SIAM J. Sci. Comput., 32 (2010), pp. 2379--2394.
78.
C. Wang, P. Sun, and Z. Li, An iterative approach for constructing immersed finite element spaces and applications to interface problems, Int. J. Numer. Anal. Model., 16 (2019), pp. 167--191.
79.
J. Wang, Y. Cao, R. Kafafy, J. Pierru, and V. K. Decyk, Simulations of ion thruster plume-spacecraft interactions on parallel supercomputer, IEEE Trans. Plasma Sci., 34 (2006), pp. 2148--2158.
80.
J. Wang, X.-M. He, and Y. Cao, Modeling spacecraft charging and charged dust particle interactions on lunar surface, in Proceedings of the 10th Spacecraft Charging Technology Conference, Biarritz, France, 2007.
81.
J. Wang, X.-M. He, and Y. Cao, Modeling electrostatic levitation of dusts on lunar surface, IEEE Trans. Plasma Sci., 36 (2008), pp. 2459--2466.
82.
R. Willis, M. Anderegg, B. Feuerbacher, and B. Fitton, Photoemission and secondary electron emission from lunar surface material, in Photon and Particle Interactions with Surfaces in Space, R. Grard, ed., Astrophysics and Space Science Library 37, Springer, Amsterdam, 1973.
83.
W. Yu, D. Han, and J. Wang, Numerical Simulations of Dust Dynamics Around Small Asteroids, IEEE Trans. Plasma Sci., 47 (2019), pp. 3724--3730.
84.
W. Yu, J. J. Wang, and D. Han, Numerical Modeling of Dust Dynamics Around Small Asteroids, in AIAA SPACE Forum 2016, AIAA 2016-5447, Long Beach, California, September 13-16, 2016.
85.
H. Zhang, T. Lin, and Y. Lin, Linear and quadratic immersed finite element methods for the multi-layer porous wall model for coronary drug-eluting stents, Int. J. Numer. Anal. Mod., 15 (2018), pp. 48--73.
86.
Q. Zhang, K. Ito, Z. Li, and Z. Zhang, Immersed finite elements for optimal control problems of elliptic PDEs with interfaces, J. Comput. Phys., 298 (2015), pp. 305--319.
87.
X. Zhang, Nonconforming immersed finite element methods for interface problems, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, 2013.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: C235 - C257
ISSN (online): 1095-7197

History

Submitted: 14 October 2020
Accepted: 22 February 2021
Published online: 14 June 2021

Keywords

  1. immersed finite element
  2. particle-in-cell
  3. parallel domain decomposition
  4. plasma-material interactions

MSC codes

  1. 35R05
  2. 65N30
  3. 65Y05

Authors

Affiliations

Funding Information

National Aeronautics and Space Administration https://doi.org/10.13039/100000104
National Science Foundation https://doi.org/10.13039/100000001 : DMS-2005272, OAC-1919789

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

On May 28, 2024, our site will enter Read Only mode for a limited time in order to complete a platform upgrade. As a result, the following functions will be temporarily unavailable: registering new user accounts, any updates to existing user accounts, access token activations, and shopping cart transactions. Contact [email protected] with any questions.