Abstract

We build a functorial pipeline for persistent homology. The input to this pipeline is a filtered simplicial complex indexed by any finite metric lattice, and the output is a persistence diagram defined as the Möbius inversion of its birth-death function. We adapt the Reeb graph edit distance to each of our categories and prove that both functors in our pipeline are 1-Lipschitz, making our pipeline stable. Our constructions generalize the classical persistence diagram, and in this setting, the bottleneck distance is strongly equivalent to the edit distance.

Keywords

  1. edit distance
  2. Möbius inversion
  3. persistence diagrams
  4. stability
  5. functoriality
  6. lattices

MSC codes

  1. 55U15
  2. 55U99

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier, Persistence images: A stable vector representation of persistent homology, J. Mach. Learn. Res., 18 (2017), pp. 1--35, http://jmlr.org/papers/v18/16-337.html.
2.
M. Barnabei, A. Brini, and G.-C. Rota, The theory of Möbius functions, Russian Math. Surveys, 41 (1986), pp. 135--188.
3.
U. Bauer, C. Landi, and F. Mémoli, The Reeb graph edit distance is universal, Found. Comput. Math., (2020), https://doi.org/10.1007/s10208-020-09488-3.
4.
L. Betthauser, P. Bubenik, and P. Edwards, Graded persistence diagrams and persistence landscapes, Discrete Comput. Geom., (2021).
5.
P. Bubenik, Statistical topological data analysis using persistence landscapes, J. Mach. Learn. Res., 16 (2015), pp. 77--102, http://jmlr.org/papers/v16/bubenik15a.html.
6.
P. Bubenik, The persistence landscape and some of its properties, in Topological Data Analysis, N. A. Baas, G. E. Carlsson, G. Quick, M. Szymik, and M. Thaule, eds., Springer-Verlag, Berlin, 2020, pp. 97--117.
7.
D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
8.
G. Carlsson, F. Mémoli, A. Ribeiro, and S. Segarra, Axiomatic construction of hierarchical clustering in asymmetric networks, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, 2013, pp. 5219--5223, https://doi.org/10.1109/ICASSP.2013.6638658.
9.
F. Chazal, D. Cohen-Steiner, and Q. Mérigot, Geometric inference for probability measures, Found. Comput. Math., 11 (2011), pp. 733--751, https://doi.org/10.1007/s10208-011-9098-0.
10.
D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, Stability of persistence diagrams, Discrete Comput. Geom., 37 (2007), pp. 103--120, https://doi.org/10.1007/s00454-006-1276-5.
11.
D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov, Vines and vineyards by updating persistence in linear time, in Proceedings of the 22nd Annual Symposium on Computational Geometry, SCG '06, Association for Computing Machinery, New York, 2006, pp. 119--126, https://doi.org/10.1145/1137856.1137877.
12.
J. Curry and A. Patel, Classification of constructible cosheaves, Theory Appl. Categ., 35 (2020), pp. 1012--1047.
13.
B. Di Fabio and C. Landi, The edit distance for Reeb graphs of surfaces, Discrete Comput. Geom., 55 (2016), pp. 423--461, https://doi.org/10.1007/s00454-016-9758-6.
14.
P. Frosini and C. Landi, Size theory as a topological tool for computer vision, Pattern Recogn. Image Anal., 9 (2001), pp. 596--603.
15.
G. Henselman and R. Ghrist, Matroid Filtrations and Computational Persistent Homology, preprint, arXiv:1606.00199, 2016.
16.
G. Henselman-Petrusek, Matroids and Canonical Forms: Theory and Applications, preprint, arXiv:1710.06084, 2017.
17.
C. Hofer, R. Kwitt, M. Niethammer, and A. Uhl, Deep learning with topological signatures, in Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17, Curran Associates Inc., Red Hook, NY, 2017, pp. 1633--1643.
18.
W. Kim and F. Mémoli, Generalized persistence diagrams for persistence modules over posets, J. Appl. Comput. Topol., 5 (2021), pp. 533--581.
19.
C. Landi and P. Frosini, New pseudodistances for the size function space, in Vision Geometry VI, Vol. 3168, R. A. Melter, A. Y. Wu, and L. J. Latecki, eds., International Society for Optics and Photonics, SPIE, Bellingham, WA, 1997, pp. 52--60, https://doi.org/10.1117/12.279674.
20.
A. McCleary and A. Patel, Bottleneck stability for generalized persistence diagrams, Proc. Amer. Math. Soc., 148 (2020), pp. 3149--3161.
21.
A. Patel, Generalized persistence diagrams, J. Appl. Comput. Topol., 1 (2018), pp. 397--419, https://doi.org/10.1007/s41468-018-0012-6.
22.
J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt, A stable multi-scale kernel for topological machine learning, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 2015, pp. 4741--4748.
23.
G. C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 2 (1964), pp. 340--368, https://doi.org/10.1007/BF00531932.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Algebra and Geometry
SIAM Journal on Applied Algebra and Geometry
Pages: 134 - 155
ISSN (online): 2470-6566

History

Submitted: 15 October 2020
Accepted: 8 December 2021
Published online: 11 April 2022

Keywords

  1. edit distance
  2. Möbius inversion
  3. persistence diagrams
  4. stability
  5. functoriality
  6. lattices

MSC codes

  1. 55U15
  2. 55U99

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : 1717159

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media