Abstract

This paper investigates the efficiency, robustness, and scalability of approximate ideal restriction (AIR) algebraic multigrid as a preconditioner in the all-at-once solution of a space-time hybridizable discontinuous Galerkin discretization of advection-dominated flows. The motivation for this study is that the time-dependent advection-diffusion equation can be seen as a “steady” advection-diffusion problem in $(d+1)$-dimensions and AIR has been shown to be a robust solver for steady advection-dominated problems. Numerical examples demonstrate the effectiveness of AIR as a preconditioner for advection-diffusion problems on fixed and time-dependent domains, using both slab-by-slab and all-at-once space-time discretizations, and in the context of uniform and space-time adaptive mesh refinement. A closer look at the geometric coarsening structure that arises in AIR also explains why AIR can provide robust, scalable, space-time convergence on advective and hyperbolic problems, while most multilevel parallel-in-time schemes struggle with such problems.

Keywords

  1. advection diffusion
  2. preconditioning
  3. AIR multigrid
  4. hybridizable discontinuous Galerkin
  5. space-time
  6. finite element methods

MSC codes

  1. 65F08
  2. 65F10
  3. 65M22
  4. 65M55
  5. 65M60

Get full access to this article

View all available purchase options and get full access to this article.

References

3.
MFEM: Modular finite element methods, https://mfem.org, 2020.
4.
V. R. Ambati and O. Bokhove, Space-time discontinuous Galerkin discretization of rotating shallow water equations, J. Comput. Phys., 225 (2007), pp. 1233--1261, https://doi.org/10.1016/j.jcp.2007.01.036.
5.
A. Bienz, W. D. Gropp, and L. N. Olson, Node aware sparse matrix--vector multiplication, J. Parallel Distrib. Comput., 130 (2019), pp. 166--178, https://doi.org/10.1016/j.jpdc.2019.03.016.
6.
A. Bienz, W. D. Gropp, and L. N. Olson, Reducing communication in algebraic multigrid with multi-step node aware communication, Int. J. High Perform. Comput. Appl., 34 (2020), 1094342020925535, https://doi.org/10.1177/1094342020925535.
7.
M. Brezina, T. A. Manteuffel, S. McCormick, J. Ruge, and G. Sanders, Towards adaptive smoothed aggregation ($\alpha$SA) for nonsymmetric problems, SIAM J. Sci. Comput., 32 (2010), pp. 14--39, https://doi.org/10.1137/080727336.
8.
E. Burman, A posteriori error estimation for interior penalty finite element approximations of the advection-reaction equation, SIAM J. Numer. Anal., 47 (2009), pp. 3584--3607, https://doi.org/10.1137/080733899.
9.
B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319--1365, https://doi.org/10.1137/070706616.
10.
X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems, SIAM J. Sci. Comput., 35 (2013), pp. A52--A78, https://doi.org/10.1137/110861002.
11.
J. de Frutos, B. García-Archilla, V. John, and J. Novo, An adaptive SUPG method for evolutionary convection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 273 (2014), pp. 219--237, https://doi.org/10.1016/j.cma.2014.01.022.
12.
H. De Sterck, R. D. Falgout, S. Friedhoff, O. A. Krzysik, and S. P. MacLachlan, Optimizing multigrid reduction-in-time and Parareal coarse-grid operators for linear advection, Numer. Linear Algebra Appl., 28 (2021), e2367, https://doi.org/10.1002/nla.2367.
13.
H. De Sterck, S. Friedhoff, A. J. Howse, and S. P. MacLachlan, Convergence analysis for parallel-in-time solution of hyperbolic systems, Numer. Linear Algebra Appl., 27 (2020), e2271, https://doi.org/10.1002/nla.2271.
14.
H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, 2nd ed., Oxford University Press, Oxford, 2014.
15.
R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. Maclachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635--C661, https://doi.org/10.1137/130944230.
16.
R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, J. B. Schroder, and S. Vandewalle, Multigrid methods with space--time concurrency, Comput. Vis. Sci., 18 (2017), pp. 123--143, https://doi.org/10.1007/s00791-017-0283-9.
17.
S. Friedhoff and B. S. Southworth, On “optimal” h-independent convergence of parareal and multigrid-reduction-in-time using Runge-Kutta time integration, Numer. Linear Algebra Appl., 281 (2020), e2301, https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software.
18.
M. J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems, SIAM J. Sci. Comput., 38 (2016), pp. A2173--A2208, https://doi.org/10.1137/15M1046605.
19.
J. Gopalakrishnan, M. Neumüller, and P. S. Vassilevski, The auxiliary space preconditioner for the de Rham complex, SIAM J. Numer. Anal., 56 (2018), pp. 3196--3218, https://doi.org/10.1137/17M1153376.
20.
J. Hanophy, B. S. Southworth, R. Li, T. Manteuffel, and J. Morel, Parallel approximate ideal restriction multigrid for solving the SN transport equations, Nucl. Sci. Eng., 194 (2020), pp. 989--1008, https://doi.org/10.1080/00295639.2020.1747263.
21.
T. Haut, P. Maginot, V. Tomov, B. Southworth, T. Brunner, and T. Bailey, An efficient sweep-based solver for the SN equations on high-order meshes, Nucl. Sci. Eng., 193 (2019), pp. 746--759, https://doi.org/10.1080/00295639.2018.1562778.
22.
G. Horton and S. Vandewalle, A space-time multigrid method for parabolic partial differential equations, SIAM J. Sci. Comput., 16 (1995), pp. 848--864, https://doi.org/10.1137/0916050.
23.
T. L. Horváth and S. Rhebergen, A locally conservative and energy-stable finite element method for the Navier--Stokes problem on time-dependent domains, Internat. J. Numer. Methods Fluids, 89 (2019), pp. 519--532, https://doi.org/10.1002/fld.4707.
24.
T. L. Horváth and S. Rhebergen, An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier--Stokes equations on moving domains, J. Comput. Phys., 417 (2020), 109577, https://doi.org/10.1016/j.jcp.2020.109577.
25.
B. Hübner, E. Walhorn, and D. Dinkler, A monolithic approach to fluid-structure interaction using space-time finite elements, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 2087--2104, https://doi.org/10.1016/j.cma.2004.01.024.
26.
P. Jamet, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain, SIAM J. Numer. Anal., 15 (1978), pp. 912--928, https://doi.org/10.1137/0715059.
27.
K. L. A. Kirk, T. L. Horvath, A. Cesmelioglu, and S. Rhebergen, Analysis of a space-time hybridizable discontinuous Galerkin method for the advection-diffusion problem on time-dependent domains, SIAM J. Numer. Anal., 57 (2019), pp. 1677--1696, https://doi.org/10.1137/18M1202049.
28.
M. Lesoinne and C. Farhat, Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Comput. Methods. Appl. Mech. Engrg., 134 (1996), pp. 71--90, https://doi.org/10.1016/0045-7825(96)01028-6.
29.
J. L. Lions, Y. Maday, and G. Turinici, Résolution d'EDP par un schéma en temps pararéel, C. R. Acad. Sci. Paris Sér. I Math, 332 (2001), pp. 661--668, https://doi.org/10.1016/S0764-4442(00)01793-6.
30.
C. Makridakis and R. H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems, Numer. Math., 104 (2006), pp. 489--514, https://doi.org/10.1007/s00211-006-0013-6.
31.
T. Manteuffel and B. S. Southworth, Convergence in norm of nonsymmetric algebraic multigrid, SIAM J. Sci. Comput., 41 (2019), pp. S269--S296.
32.
T. A. Manteuffel, S. Münzenmaier, J. Ruge, and B. Southworth, Nonsymmetric reduction-based algebraic multigrid, SIAM J. Sci. Comput., 41 (2019), pp. S242--S268, https://doi.org/10.1137/18M1193761.
33.
T. A. Manteuffel, L. N. Olson, J. B. Schroder, and B. S. Southworth, A root-node--based algebraic multigrid method, SIAM J. Sci. Comput., 39 (2017), pp. S723--S756, https://doi.org/10.1137/16M1082706.
34.
T. A. Manteuffel, J. Ruge, and B. S. Southworth, Nonsymmetric algebraic multigrid based on local approximate ideal restriction ($\ell$AIR), SIAM J. Sci. Comput., 40 (2018), pp. A4105--A4130, https://doi.org/10.1137/17M1144350.
35.
A. Masud and T. Hughes, A space-time Galerkin/least-squares finite element formulation of the Navier--Stokes equations for moving domain problems, Comput. Methods Appl. Mech. Engrg., 146 (1997), pp. 91--126, https://doi.org/10.1016/S0045-7825(96)01222-4.
36.
Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J. Sci. Comput., 34 (2012), pp. A2288--A2316, https://doi.org/10.1137/110835347.
37.
P.-O. Persson, J. Bonet, and J. Peraire, Discontinuous Galerkin solution of the Navier--Stokes equations on deformable domains, Comput. Methods. Appl. Mech. Engrg., 198 (2009), pp. 1585--1595, https://doi.org/10.1016/j.cma.2009.01.012.
38.
S. Rhebergen and B. Cockburn, A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys., 231 (2012), pp. 4185--4204, https://doi.org/10.1016/j.jcp.2012.02.011.
39.
S. Rhebergen and B. Cockburn, Space-time hybridizable discontinuous Galerkin method for the advection-diffusion equation on moving and deforming meshes, in The Courant--Friedrichs--Lewy (CFL) Condition, 80 Years after its Discovery, C. A. de Moura and C. S. Kubrusly, eds., Birkhäuser, Boston, 2013, pp. 45--63, https://doi.org/10.1007/978-0-8176-8394-8_4.
40.
S. Rhebergen, B. Cockburn, and J. J. W. van der Vegt, A space-time discontinuous Galerkin method for the incompressible Navier--Stokes equations, J. Comput. Phys., 233 (2013), pp. 339--358, https://doi.org/10.1016/j.jcp.2012.08.052.
41.
B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Front. Appl. Math. 35, SIAM, Philadelphia, 2008.
42.
J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, Front. Appl. Math. 3, SIAM, Philadelphia, 1987, pp. 73--130, https://doi.org/10.1137/1.9781611971057.ch4.
43.
D. Ruprecht, Wave propagation characteristics of parareal, Comput. Vis. Sci., 19 (2018), pp. 1--17, https://doi.org/10.1007/s00791-018-0296-z.
44.
M. Sala and R. S. Tuminaro, A new Petrov\textendashGalerkin smoothed aggregation preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput., 31 (2008), pp. 143--166, https://doi.org/10.1137/060659545.
45.
D. Schötzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method, SIAM J. Numer. Anal., 38 (2000), pp. 837--875, https://doi.org/10.1137/S0036142999352394.
46.
J. B. Schroder, Smoothed aggregation solvers for anisotropic diffusion, Numer. Linear Algebra Appl., 19 (2012), pp. 296--312, https://doi.org/10.1002/nla.1805.
47.
W. E. H. Sollie, O. Bokhove, and J. J. W. van der Vegt, Space-time discontinuous Galerkin finite element method for two-fluid flows, J. Comput. Phys., 230 (2011), pp. 789--817, https://doi.org/10.1016/j.jcp.2010.10.019.
48.
M. Tavelli and M. Dumbser, A staggered space-time discontinuous Galerkin method for the incompressible Navier--Stokes equations on two-dimensional triangular meshes, Comput. & Fluids, 119 (2015), pp. 235--249, https://doi.org/10.1016/j.compfluid.2015.07.003.
49.
M. Tavelli and M. Dumbser, A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier--Stokes equations on unstructured tetrahedral meshes, J. Comput. Phys., 319 (2016), pp. 294--323, https://doi.org/10.1016/j.jcp.2016.05.009.
50.
T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flow with drifting cylinders, Comput. Methods Appl. Mech. Engrg., 94 (1992), pp. 353--371, https://doi.org/10.1016/0045-7825(92)90060-W.
51.
T. E. Tezduyar, S. Sathe, and K. Stein, Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 5743--5753, https://doi.org/10.1016/j.cma.2005.08.023.
52.
J. J. W. van der Vegt and J. J. Sudirham, A space-time discontinuous Galerkin method for the time-dependent Oseen equations, Appl. Numer. Math, 58 (2008), pp. 1892--1917, https://doi.org/10.1016/j.apnum.2007.11.010.
53.
J. J. W. van der Vegt and H. van der Ven, Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. General formulation, J. Comput. Phys., 182 (2002), pp. 546--585, https://doi.org/10.1006/jcph.2002.7185.
54.
H. van der Ven, An adaptive multitime multigrid algorithm for time-periodic flow simulations, J. Comput. Phys., 227 (2008), pp. 5286--5303, https://doi.org/10.1016/j.jcp.2008.01.039.
55.
E. Walhorn, A. Kölke, B. Hübner, and D. Dinkler, Fluid-structure coupling within a monolithic model involving free surface flows, Comput. Struct., 83 (2005), pp. 2100--2111, https://doi.org/10.1016/j.compstruc.2005.03.010.
56.
L. Wang and P.-O. Persson, A high-order discontinuous Galerkin method with unstructured space-time meshes for two-dimensional compressible flows on domains with large deformations, Comput. & Fluids, 118 (2015), pp. 53--68, https://doi.org/10.1016/j.compfluid.2015.05.026.
57.
T. Weinzierl and T. Köppl, A geometric space-time multigrid algorithm for the heat equation, Numer. Math. Theory Methods Appl., 5 (2012), pp. 110--130.
58.
P. Wesseling and C. W. Oosterlee, Geometric multigrid with applications to computational fluid dynamics, J. Comput. Appl. Math., 128 (2001), pp. 311--334, https://doi.org/10.1016/S0377-0427(00)00517-3.
59.
T. A. Wiesner, R. S. Tuminaro, W. A. Wall, and M. W. Gee, Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections, Numer. Linear Algebra Appl., 21 (2014), pp. 415--438, https://doi.org/10.1002/nla.1889.
60.
O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam, 2013.
61.
O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), pp. 337--357, https://doi.org/10.1002/nme.1620240206.
62.
O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33 (1992), pp. 1365--1382, https://doi.org/10.1002/nme.1620330703.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A3393 - A3416
ISSN (online): 1095-7197

History

Submitted: 22 October 2020
Accepted: 7 June 2021
Published online: 30 September 2021

Keywords

  1. advection diffusion
  2. preconditioning
  3. AIR multigrid
  4. hybridizable discontinuous Galerkin
  5. space-time
  6. finite element methods

MSC codes

  1. 65F08
  2. 65F10
  3. 65M22
  4. 65M55
  5. 65M60

Authors

Affiliations

Funding Information

Lawrence Livermore National Laboratory https://doi.org/10.13039/100006227 : B639443, B634212
Natural Sciences and Engineering Research Council of Canada https://doi.org/10.13039/501100000038 : RGPIN-05606-2015

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media