Abstract

Velocity models presenting sharp interfaces are highly relevant in seismic imaging, e.g., for imaging the subsurface of the Earth in the presence of salt bodies. In order to mitigate the oversmoothing of classical regularization strategies such as the Tikhonov regularization, we propose a shape optimization approach for the sharp-interface reconstruction in time-domain acoustic full waveform inversion. Our main result includes the shape differentiability of the cost functional measuring the misfit between observed and predicted data. In particular, it reveals the expression of the distributed shape derivative in tensor form, built on a Lagrangian-type approach and regularity results for the wave equation with discontinuous coefficients. Based on the achieved distributed shape derivative and the level set method, we propose a numerical approach and present several numerical tests supporting our approach.

Keywords

  1. full waveform inversion
  2. shape optimization
  3. level set method
  4. acoustic wave equation
  5. distributed shape derivative
  6. sharp interfaces

MSC codes

  1. 35Q93
  2. 35R30
  3. 35R05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. S. Aghamiry, A. Gholami, and S. Operto, Implementing bound constraints and total-variation regularization in extended full waveform inversion with the alternating direction method of multiplier: Application to large contrast media, Geophys. J. Internat., 218 (2019), pp. 855--872, https://doi.org/10.1093/gji/ggz189, 2019.
2.
Y. Albuquerque and A. Laurain, Reconstruction of sharp interfaces in time-domain full waveform inversion, in Conference Proceedings, 82nd EAGE Annual Conference & Exhibition Workshop Programme, European Association of Geoscientists & Engineers, 2020, pp. 1--5, https://doi.org/10.3997/2214-4609.202011976.
3.
H. Ammari, An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume, SIAM J. Control Optim., 41 (2002), pp. 1194--1211, https://doi.org/10.1137/s0363012901384247.
4.
J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977), pp. 370--373, https://doi.org/10.2307/2041821.
5.
G. Bao and W. W. Symes, On the sensitivity of solutions of hyperbolic equations to the coefficients, Comm. Partial Differential Equations, 21 (1996), pp. 395--422, https://doi.org/10.1080/03605309608821190.
6.
E. Beretta, M. V. de Hoop, E. Francini, S. Vessella, and J. Zhai, Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves, Inverse Problems, 33 (2017), 035013, https://doi.org/10.1088/1361-6420/aa5bef.
7.
C. Boehm, Efficient Inversion Methods for Constrained Parameter Identification in Full-Waveform Seismic Tomography, Ph.D. thesis, Technische Universität München, 2015.
8.
C. Boehm and M. Ulbrich, A semismooth Newton-CG method for constrained parameter identification in seismic tomography, SIAM J. Sci. Comput., 37 (2015), pp. S334--S364, https://doi.org/10.1137/140968331.
9.
J. Cagnol and J.-P. Zolésio, Shape derivative in the wave equation with Dirichlet boundary conditions, J. Differential Equations, 158 (1999), pp. 175--210, https://doi.org/10.1006/jdeq.1999.3643.
10.
M. Cea, Optimal design for 2D wave equations, Optim. Methods Softw., 32 (2017), pp. 86--108, https://doi.org/10.1080/10556788.2016.1201083.
11.
D.-H. Chen and I. Yousept, Variational source condition for ill-posed backward nonlinear Maxwell's equations, Inverse Problems, 35 (2019), 025001, https://doi.org/10.1088/1361-6420/aaeebe.
12.
C. Clason, K. Kunisch, and P. Trautmann, Optimal control of the principal coefficient in a scalar wave equation, Appl. Math. Optim., 2020, https://doi.org/10.1007/s00245-020-09733-9.
13.
D. Datta, M. K. Sen, F. Liu, and S. Morton, Full-waveform inversion of salt models using shape optimization and simulated annealing, Geophys., 84 (2019), pp. R793--R804, https://doi.org/10.1190/geo2018-0175.1.
14.
M. Delfour, G. Payre, and J.-P. Zolésio, An optimal triangulation for second-order elliptic problems, Comput. Methods Appl. Mech. Engrg., 50 (1985), pp. 231--261, https://doi.org/10.1016/0045-7825(85)90095-7.
15.
E. Esser, L. Guasch, T. van Leeuwen, A. Y. Aravkin, and F. J. Herrmann, Total variation regularization strategies in full-waveform inversion, SIAM J. Imaging Sci., 11 (2018), pp. 376--406, https://doi.org/10.1137/17m111328x.
16.
A. Fichtner, Full Seismic Waveform Modelling and Inversion, Springer, Berlin, Heidelberg, 2011, https://doi.org/10.1007/978-3-642-15807-0.
17.
Z. Guo and M. V. de Hoop, Shape optimization in full waveform inversion with sparse blocky model representations, Proc. Project Rev., 1 (2012), pp. 189--208.
18.
Z. Guo and M. V. de Hoop, Shape Optimization and Level Set Method in Full Waveform Inversion with 3D Body Reconstruction, in SEG Technical Program Expanded Abstracts 2013, Society of Exploration Geophysicists, 2013, pp. 1079--1083.
19.
P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators, SIAM J. Control Optim., 44 (2005), pp. 349--366, https://doi.org/10.1137/S0363012903436247.
20.
M. Hintermüller, A. Laurain, and I. Yousept, Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model, Inverse Problems, 31 (2015), 065006, https://doi.org/10.1088/0266-5611/31/6/065006.
21.
R. Hiptmair, A. Paganini, and S. Sargheini, Comparison of approximate shape gradients, BIT, 55 (2014), pp. 459--485, https://doi.org/10.1007/s10543-014-0515-z.
22.
A. Kadu, T. van Leeuwen, and W. A. Mulder, Salt reconstruction in full-waveform inversion with a parametric level-set method, IEEE Trans. Comput. Imaging, 3 (2017), pp. 305--315, https://doi.org/10.1109/TCI.2016.2640761.
23.
A. Kirsch, The domain derivative and two applications in inverse scattering theory, Inverse Problems, 9 (1993), pp. 81--96, http://stacks.iop.org/0266-5611/9/81.
24.
A. Kirsch and A. Rieder, On the linearization of operators related to the full waveform inversion in seismology, Math. Methods Appl. Sci., 37 (2014), pp. 2995--3007, https://doi.org/10.1002/mma.3037.
25.
A. Kirsch and A. Rieder, Inverse problems for abstract evolution equations with applications in electrodynamics and elasticity, Inverse Problems, 32 (2016), 085001, https://doi.org/10.1088/0266-5611/32/8/085001.
26.
K. F. Lam and I. Yousept, Consistency of a phase field regularisation for an inverse problem governed by a quasilinear Maxwell system, Inverse Problems, 36 (2020), 045011, https://doi.org/10.1088/1361-6420/ab6f9f.
27.
D. Lanzsnaster, P. B. de Castro, H. E. Junior, P. T. R. Mendoca, E. C. N. Silva, and E. A. Fancello, A level-set approach based on reaction--diffusion equation applied to inversion problems in acoustic wave propagation, Inverse Problems, 37 (2021), 025009, https://doi.org/10.1088/1361-6420/abbf8e.
28.
A. Laurain, A level set-based structural optimization code using FEniCS, Struct. Multidiscip. Optim., 58 (2018), pp. 1311--1334, https://doi.org/10.1007/s00158-018-1950-2.
29.
A. Laurain, Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains, J. Math. Pures Appl., 134 (2020), pp. 328--368, https://doi.org/10.1016/j.matpur.2019.09.002.
30.
A. Laurain and K. Sturm, Distributed shape derivative via averaged adjoint method and applications, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1241--1267, https://doi.org/10.1051/m2an/2015075.
31.
A. Lechleiter and J. W. Schlasche, Identifying Lamé parameters from time-dependent elastic wave measurements, Inverse Problems Sci. Engrg., 25 (2017), pp. 2--26, https://doi.org/10.1080/17415977.2015.1132713.
32.
W. Lewis, B. Starr, and D. Vigh, A level set approach to salt geometry inversion in full-waveform inversion, in SEG Technical Program Expanded Abstracts 2012, Society of Exploration Geophysicists, 2012, pp. 1--5.
33.
W. Lewis and D. Vigh, 3D salt geometry inversion in full-waveform inversion using a level-set method, in SEG Technical Program Expanded Abstracts 2016, Society of Exploration Geophysicists, 2016, pp. 1221--1226, https://doi.org/10.1190/segam2016-13968419.1.
34.
A. Münch, Optimal design of the support of the control for the $2$-D wave equation: A numerical method, Internat. J. Numer. Anal. Model., 5 (2008), pp. 331--351.
35.
A. Münch, Optimal internal dissipation of a damped wave equation using a topological approach, Internat. J. Appl. Math. Comput. Sci., 19 (2009), pp. 15--38, https://doi.org/10.2478/v10006-009-0002-x.
36.
A. Münch, P. Pedregal, and F. Periago, Optimal design of the damping set for the stabilization of the wave equation, J. Differential Equations, 231 (2006), pp. 331--358, https://doi.org/10.1016/j.jde.2006.06.009.
37.
A. Nowakowski, Shape optimization of control problems described by wave equations, Control Cybernet., 37 (2008), pp. 1045--1055.
38.
S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12--49, https://doi.org/10.1016/0021-9991(88)90002-2.
39.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
40.
Y. Privat, E. Trélat, and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), pp. 1097--1126, https://doi.org/10.1016/j.anihpc.2012.11.005.
41.
J. Shi, R. Ye, and M. de Hoop, Full-waveform inversion with 3D-shape optimization on unstructured meshes, in SEG Technical Program Expanded Abstracts 2017, Society of Exploration Geophysicists, 2017, pp. 1528--1532, https://doi.org/10.1190/segam2017-17790720.1.
42.
J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Ser. Comput. Math. 16, Springer-Verlag, Berlin, 1992.
43.
C. Stolk, On the Modeling and Inversion of Seismic Data, Ph.D. thesis, University of Utrecht, The Netherlands, 2000; available from https://dspace.library.uu.nl/handle/1874/855.
44.
K. Sturm, Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption, SIAM J. Control Optim., 53 (2015), pp. 2017--2039, https://doi.org/10.1137/130930807.
45.
J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, Geophys., 74 (2009), pp. WCC1--WCC26, https://doi.org/10.1190/1.3238367.
46.
I. Yousept, Finite element analysis of an optimal control problem in the coefficients of time-harmonic eddy current equations, J. Optim. Theory Appl., 154 (2012), pp. 879--903, https://doi.org/10.1007/s10957-012-0040-7.
47.
I. Yousept, Hyperbolic Maxwell variational inequalities of the second kind, ESAIM Control Optim. Calc. Var., 26 (2020), 34, https://doi.org/10.1051/cocv/2019015.
48.
I. Yousept, Well-posedness theory for electromagnetic obstacle problems, J. Differential Equations, 269 (2020), pp. 8855--8881, https://doi.org/10.1016/j.jde.2020.05.009.
49.
W. P. Ziemer, Weakly Differentiable Functions, Springer, New York, 1989, https://doi.org/10.1007/978-1-4612-1015-3.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 939 - 964
ISSN (online): 1095-712X

History

Submitted: 3 November 2020
Accepted: 21 January 2021
Published online: 20 May 2021

Keywords

  1. full waveform inversion
  2. shape optimization
  3. level set method
  4. acoustic wave equation
  5. distributed shape derivative
  6. sharp interfaces

MSC codes

  1. 35Q93
  2. 35R30
  3. 35R05

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : 159/2-2
Fundação de Amparo à Pesquisa do Estado de São Paulo https://doi.org/10.13039/501100001807 : 2014/50279-4
Conselho Nacional de Desenvolvimento Científico e Tecnológico https://doi.org/10.13039/501100003593 : 408175/2018-4, 304258/2018-0

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media