Abstract.

Spotlight mode airborne synthetic aperture radar (SAR) is a coherent imaging modality that is an important tool in remote sensing. Existing methods for spotlight SAR image reconstruction from phase history data typically produce a single image estimate which approximates the reflectivity of an unknown ground scene, and therefore provide no quantification of the certainty with which the estimate can be trusted. In addition, speckle affects all coherent imaging modalities causing a degradation of image quality. Many point estimate image reconstruction methods incorrectly treat speckle as additive noise resulting in an unnatural smoothing of the speckle that also reduces image contrast. The purpose of this paper is to address the issues of speckle and uncertainty quantification by introducing a sampling-based approach to SAR image reconstruction directly from phase history data. In particular, a statistical model for speckle as well as a corresponding sparsity technique to reduce it are directly incorporated into the model. Rather than a single point estimate, samples of the resulting joint posterior density are efficiently obtained using a Gibbs sampler, which are in turn used to derive estimates and other statistics which aid in uncertainty quantification. The latter information is particularly important in SAR, where ground truth images even for synthetically created examples are typically unknown. While similar methods have been deployed to process formed images, this paper focuses on the integration of these techniques into image reconstruction from phase history data. An example result using real-world data shows that, when compared with existing methods, the sampling-based approach introduced provides parameter-free estimates with improved contrast and significantly reduced speckle, as well as uncertainty quantification information.

Keywords

  1. sampling-based image reconstruction
  2. Bayesian uncertainty quantification
  3. synthetic aperture radar

MSC codes

  1. 94A08
  2. 68U10
  3. 62F15
  4. 65C05
  5. 65F22
  6. 62G07
  7. 60J22

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. Andersson, R. Moses, and F. Natterer, Fast Fourier methods for synthetic aperture radar imaging, IEEE Trans. Aerospace Electron. Syst., 48 (2012), pp. 215–229.
2.
R. Archibald, A. Gelb, and R. B. Platte, Image reconstruction from undersampled Fourier data using the polynomial annihilation transform, J. Sci. Comput., 67 (2016), pp. 432–452.
3.
F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, A tutorial on speckle reduction in synthetic aperture radar images, IEEE Geosci. Remote Sensing Mag., 1 (2013), pp. 6–35.
4.
G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), pp. 925–946, https://doi.org/10.1137/060671814.
5.
C. D. Austin, Sparse Methods for Model Estimation with Applications to Radar Imaging, Ph.D. thesis, The Ohio State University, Columbus, OH, 2012.
6.
C. D. Austin, E. Ertin, and R. L. Moses, Sparse multipass 3D SAR imaging: Applications to the GOTCHA data set, in Algorithms for Synthetic Aperture Radar Imagery XVI, Proc. Vol. 7337, SPIE, Bellingham, WA, 2009, 733703.
7.
J. Bardsley and T. Cui, Optimization-Based MCMC Methods for Nonlinear Hierarchical Statistical Inverse Problems, preprint, https://arxiv.org/abs/2002.06358, 2020.
8.
J. M. Bardsley, MCMC-based image reconstruction with uncertainty quantification, SIAM J. Sci. Comput., 34 (2012), pp. A1316–A1332, https://doi.org/10.1137/11085760X.
9.
J. M. Bardsley and T. Cui, A Metropolis-Hastings-within-Gibbs sampler for nonlinear hierarchical-Bayesian inverse problems, in 2017 MATRIX Annals, Springer, New York, 2019, pp. 3–12.
10.
J. M. Bardsley, A. Seppänen, A. Solonen, H. Haario, and J. Kaipio, Randomize-then-optimize for sampling and uncertainty quantification in electrical impedance tomography, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1136–1158, https://doi.org/10.1137/140978272.
11.
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), pp. 1–122.
12.
D. Calvetti, M. Pragliola, E. Somersalo, and A. Strang, Sparse reconstructions from few noisy data: Analysis of hierarchical Bayesian models with generalized gamma hyperpriors, Inverse Problems, 36 (2020), 025010.
13.
D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing, Surv. Tutor. Appl. Math. 2. Springer, New York, 2007.
14.
D. Calvetti and E. Somersalo, Hypermodels in the Bayesian imaging framework, Inverse Problems, 24 (2008), 034013.
15.
D. Calvetti, E. Somersalo, and A. Strang, Hierachical Bayesian models and sparsity: l2-magic, Inverse Problems, 35 (2019), 035003.
16.
E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509.
17.
E. J. Candès, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted l1 minimization, J. Fourier Anal. Appl., 14 (2008), pp. 877–905.
18.
C. H. Casteel Jr, L. A. Gorham, M. J. Minardi, S. M. Scarborough, K. D. Naidu, and U. K. Majumder, A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment, in Algorithms for Synthetic Aperture Radar Imagery XIV, Proc. Vol. 6568, SPIE, Bellingham, WA, 2007, 65680D.
19.
M. Çetin and W. C. Karl, Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization, IEEE Trans. Image Process., 10 (2001), pp. 623–631.
20.
R. Chartrand and W. Yin. Iteratively reweighted algorithms for compressive sensing. in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing 2008, IEEE, Washington, DC, 2008, pp. 3869–3872.
21.
D.-Q. Chen and L.-Z. Cheng, Spatially adapted total variation model to remove multiplicative noise, IEEE Trans. Image Process., 21 (2012), pp. 1650–1662.
22.
G. Chierchia, M. El Gheche, G. Scarpa, and L. Verdoliva, Multitemporal SAR image despeckling based on block-matching and collaborative filtering, IEEE Trans. Geosci. Remote Sensing, 55 (2017), pp. 5467–5480.
23.
V. Churchill, R. Archibald, and A. Gelb, Edge-adaptive ℓ2 regularization image reconstruction from non-uniform Fourier data, Inverse Probl. Imaging, 13 (2019), pp. 931–958.
24.
V. Churchill and A. Gelb, Detecting edges from non-uniform Fourier data via sparse Bayesian learning, J. Sci. Comput., 80 (2019), pp. 762–783.
25.
D. Cozzolino, S. Parrilli, G. Scarpa, G. Poggi, and L. Verdoliva, Fast adaptive nonlocal SAR despeckling, IEEE Geosci. Remote Sensing Lett., 11 (2014), pp. 524–528.
26.
A. Daoui, M. Yamni, H. Karmouni, M. Sayyouri, H. Qjidaa and et al., Stable computation of higher order Charlier moments for signal and image reconstruction, Inform. Sci., 521 (2020), pp. 251–276.
27.
I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, Iteratively reweighted least squares minimization for sparse recovery, Comm. Pure. Appl. Math., 63 (2010), pp. 1–38.
28.
G. Di Martino, M. Poderico, G. Poggi, D. Riccio, and L. Verdoliva, Benchmarking framework for SAR despeckling, IEEE Trans. Geosci. Remote Sensing, 52 (2013), pp. 1596–1615.
29.
X. Dong and Y. Zhang, SAR image reconstruction from undersampled raw data using maximum a posteriori estimation, IEEE J. Selected Topics Appl. Earth Observ. Remote Sensing, 8 (2015), pp. 1651–1664.
30.
H. Duan, L. Zhang, J. Fang, L. Huang, and H. Li, Pattern-coupled sparse Bayesian learning for inverse synthetic aperture radar imaging, IEEE Signal Process. Lett., 22 (2015), pp. 1995–1999.
31.
E. Ertin, C. D. Austin, S. Sharma, R. L. Moses, and L. C. Potter, GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures, in Algorithms for Synthetic Aperture Radar Imagery XIV, Proc. Vol. 6568, SPIE, Bellingham, WA, 2007, 656802.
32.
H. G. Feichtinger, K. Gröchenig, and T. Strohmer, Efficient numerical methods in non-uniform sampling theory, Numer. Math., 69 (1995), pp. 423–440, https://doi.org/10.1007/s002110050101.
33.
J. A. Fessler and B. P. Sutton, Nonuniform fast Fourier transforms using min-max interpolation, IEEE Trans. Signal Process., 51 (2003), pp. 560–574.
34.
G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing, CRC Press, Boca Raton, FL, 1999.
35.
A. Gelb and G. Song, A frame theoretric approach to the nonuniform fast Fourier transform, SIAM J. Numer. Anal., 52 (2014), pp. 1222–1242, https://doi.org/10.1137/13092160X.
36.
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis, Chapman and Hall/CRC, Boca Raton, FL, 2013
37.
S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine Intelligence, 6 (1984), pp. 721–741.
38.
G. H. Golub, P. C. Hansen, and D. P. O’Leary, Tikhonov regularization and total least squares, SIAM J. Matrix Anal. Appl., 21 (1999), pp. 185–194, https://doi.org/10.1137/S0895479897326432.
39.
W. G. Goodman, R. S. Carrara, and R. M. Majewski, Spotlight Synthetic Aperture Radar Signal Processing Algorithms, Artech House, Boston, MA, 1995.
40.
L. A. Gorham and L. J. Moore, SAR image formation toolbox for MATLAB, in Algorithms for Synthetic Aperture Radar Imagery XVII, Proc. Vol. 7699, SPIE, Bellingham, WA, 2010, 769906.
41.
L. Greengard and J.-Y. Lee, Accelerating the nonuniform fast Fourier transform, SIAM Rev., 46 (2004), pp. 443–454, https://doi.org/10.1137/S003614450343200X.
42.
C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, Springer, New York, 2012.
43.
S. Ji, Y. Xue, and L. Carin, Bayesian compressive sensing, IEEE Trans. Signal Process., 56 (2008), pp. 2346–2356.
44.
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer, New York, 2005.
45.
O. Karakuş, E. E. Kuruoğlu, and M. A. Altınkaya, Generalized Bayesian model selection for speckle on remote sensing images, IEEE Trans. Image Process., 28 (2018), pp. 1748–1758.
46.
J.-S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, Speckle filtering of synthetic aperture radar images: A review, Remote Sensing Rev., 8 (1994), pp. 313–340.
47.
J.-Y. Lee and L. Greengard, The type 3 nonuniform FFT and its applications, J. Comput. Phys., 206 (2005), pp. 1–5.
48.
L. J. Moore, B. D. Rigling, and R. P. Penno, Characterization of phase information of synthetic aperture radar imagery, IEEE Trans. Aero. Elec. Syst., 55 (2018), pp. 676–688.
49.
J. G. Nagy and D. P. O’Leary, Image restoration through subimages and confidence images, Electron. Trans. Numer. Anal., 13 (2002), pp. 22–37.
50.
R. M. Neal, Bayesian Learning for Neural Networks, Lecture Notes in Statistics 118, Springer, New York, 1996.
51.
G. Newstadt, E. Zelnio, and A. Hero, Moving target inference with bayesian models in sar imagery, IEEE Trans. Aero. Elec. Syst., 50 (2014), pp. 2004–2018.
52.
C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images, SciTech Publishing, Raleigh, NC, 2004.
53.
S. Parrilli, M. Poderico, C. V. Angelino, and L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geosci. Remote Sensing, 50 (2012), pp. 606–616.
54.
D. Potts, G. Steidl, and M. Tasche, Fast Fourier transforms for nonequispaced data: A tutorial, in Modern Sampling Theory, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2001, pp. 247–270.
55.
T. Sanders, MATLAB Imaging Algorithms: Image Reconstruction, Restoration, and Alignment, with a Focus in Tomography, https://doi.org/10.13140/RG.2.2.33492.60801, 60801, http://www.toby-sanders.com/software, Accessed: 2016-19-08.
56.
T. Sanders, A. Gelb, and R. B. Platte, Composite SAR imaging using sequential joint sparsity, J. Comput. Phys., 338 (2017), pp. 357–370.
57.
T. Scarnati, Recent Techniques for Regularization in Partial Differential Equations and Imaging, Ph. D. thesis, Arizona State University, Phoenix, AZ, 2018.
58.
T. Scarnati and A. Gelb, Joint image formation and two-dimensional autofocusing for synthetic aperture radar data, J.Comput. Phys., 374 (2018), pp. 803–821.
59.
H. Sedarat and D. G. Nishimura, On the optimality of the gridding reconstruction algorithm, IEEE Trans. Med. Imaging, 19 (2000), pp. 306–317.
60.
M. E. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn. Res., 1 (2001), pp. 211–244.
61.
J. Wu, F. Liu, L. Jiao, and X. Wang, Compressive sensing SAR image reconstruction based on Bayesian framework and evolutionary computation, IEEE Trans. Image Process., 20 (2011), pp. 1904–1911.
62.
Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, High-resolution passive SAR imaging exploiting structured Bayesian compressive sensing, IEEE J. Seledted Topics Signal Process., 9 (2015), pp. 1484–1497.
63.
J.-p Xu, Y. Pi, and Z. Cao, Bayesian compressive sensing in synthetic aperture radar imaging, IET Radar Sonar & Navigation, 6 (2012), pp. 2–8.
64.
M. Xue, E. Santiago, M. Sedehi, X. Tan, and J. Li, SAR imaging via iterative adaptive approach and sparse Bayesian learning, in Algorithms for Synthetic Aperture Radar Imagery XVI, Proc. Vol. 7337, SPIE, Bellingham, WA, 2009, 733706.
65.
X. Zhang, J. Qin, and G. Li, SAR target classification using Bayesian compressive sensing with scattering centers features, Progr. Electromagnetics Res., 136 (2013), pp. 385–407.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 1225 - 1249
ISSN (online): 2166-2525

History

Submitted: 17 November 2020
Accepted: 6 April 2022
Published online: 28 September 2022

Keywords

  1. sampling-based image reconstruction
  2. Bayesian uncertainty quantification
  3. synthetic aperture radar

MSC codes

  1. 94A08
  2. 68U10
  3. 62F15
  4. 65C05
  5. 65F22
  6. 62G07
  7. 60J22

Authors

Affiliations

Victor Churchill Contact the author
Department of Mathematics, The Ohio State University, Columbus, OH 43210 USA ([email protected]).

Funding Information

Division of Mathematical Sciences (DMS): DMS-1502640, DMS-1912685
This research was partially supported by NSF grants DMS-1502640 and DMS-1912685, the Air Force Office of Sponsored Research grant FA9550-18-1-0316, and the Office of Naval Research MURI grant N00014-20-1-2595.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media