Abstract

In this paper, we introduce a pore-scale model for reactive flow and transport in evolving porous media exhibiting two competing mineral phases. By formal two-scale asymptotic expansion in a level-set framework an effective micro-macro model is derived. As such, our approach comprises flow and transport equations on the macroscopic scale including effective hydrodynamic parameters calculated from representative unit cells. Conversely, the macroscopic solutes' concentrations alter the unit cells' geometrical structure by triggering dissolution or precipitation processes. The numerical implementation of such micro-macro models poses several challenges, especially in terms of geometry representation and computational complexity. In this research, the Voronoi implicit interface method is applied to characterize and evolve the two-mineral structure and first-order convergence is obtained in a test case where analytical solutions are available. Furthermore, we present a sophisticated overall solution strategy for the introduced fully coupled nonlinear micro-macro problem and conduct numerical simulations. In doing so, the significant performance enhancements arising from machine learning techniques are evaluated. To this end, a convolutional neural network is trained on (realistic) unit cell geometries for permeability prediction and deployed in a micro-macro simulation. The outcome is compared to the respective results obtained by classical methods in terms of predictive power and computational effort.

Keywords

  1. convolutional neural network
  2. evolving porous media
  3. micro-macro model
  4. multiphase solid
  5. reactive transport
  6. upscaling

MSC codes

  1. 35B27
  2. 68T07
  3. 76V05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and K. Khan, Medical image analysis using convolutional neural networks: A review, J. Medical Systems, 42 (2018), https://doi.org/10.1007/s10916-018-1088-1.
2.
M. Bastidas Olivares, C. Bringedal, and I. S. Pop, A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media, Appl. Math. Comput., 396 (2021), https://doi.org/10.1016/j.amc.2020.125933.
3.
M. Bollhöfer and Y. Saad, Multilevel preconditioners constructed from inverse-based ILUs, SIAM J. Sci. Comput., 27 (2006), pp. 1627--1650, https://doi.org/10.1137/040608374.
4.
C. Bringedal, I. Berre, I. S. Pop, and F. A. Radu, Upscaling of non-isothermal reactive porous media flow with changing porosity, Transp. Porous Media, 114 (2016), pp. 371--393, https://doi.org/10.1007/s11242-015-0530-9.
5.
C. Bringedal and K. Kumar, Effective behavior near clogging in upscaled equations for non-isothermal reactive porous media flow, Transp. Porous Media, 120 (2017), pp. 553--577, https://doi.org/10.1007/s11242-017-0940-y.
6.
L. Chen, Q. Kang, B. Carey, and W.-Q. Tao, Pore-scale study of diffusion–reaction processes involving dissolution and precipitation using the lattice Boltzmann method, Internat. J. Heat Mass Transfer, 75 (2014), pp. 483--496, https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.074.
7.
X. Chen and B. Hu, Viscosity solutions of discontinuous Hamilton--Jacobi equations, Interfaces Free Bound., 10 (2008), pp. 339--359, https://doi.org/10.4171/IFB/192.
8.
M. Christie and M. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE Reservoir Evaluation Engineering, 4 (2001), https://doi.org/10.2118/66599-MS.
9.
A. Dhillon and G. Verma, Convolutional neural network: A review of models, methodologies and applications to object detection, Progress Artificial Intelligence, 9 (2019), pp. 85--112, https://doi.org/10.1007/s13748-019-00203-0.
10.
S. Engblom and D. Lukarski, Fast MATLAB compatible sparse assembly on multicore computers, Parallel Comput., 56 (2016), pp. 1--17, https://doi.org/10.1016/j.parco.2016.04.001.
11.
F. Frank, Numerical Studies of Models for Electrokinetic Flow and Charged Solute Transport in Periodic Porous Media, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2013, https://d-nb.info/1054331324/34.
12.
P. Frolkovič, N. Gajdošová, S. Gärttner, and N. Ray, Voronoi implicit interface method for geometry evolution of two minerals with applications in reactive porous media, in Proceedings of the Conference Algoritmy, 2020, pp. 121--130, http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1566.
13.
M. Gahn, M. Neuss-Radu, and I. Pop, Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions, J. Differential Equations, 289 (2021), pp. 95--127, https://doi.org/10.1016/j.jde.2021.04.013.
14.
S. Gärttner, F. O. Alpak, A. Meier, N. Ray, and F. Frank, Estimating Permeability of 3D Micro-CT Images by Physics-Informed CNNs Based on DNS, https://arxiv.org/abs/2109.01818, 2021.
15.
S. Gärttner and F. Frank, RTSPHEM -- Reactive Transport Solver in Porous Homogenized Evolving Media, https://github.com/cupperfreeze/RTSPHEM/, 2012.
16.
S. Gärttner, P. Frolkovič, P. Knabner, and N. Ray, Efficiency and accuracy of micro-macro models for mineral dissolution, Water Resources Research, 56 (2020), https://doi.org/10.1029/2020WR027585.
17.
K. Graczyk and M. Matyka, Predicting porosity, permeability, and tortuosity of porous media from images by deep learning, Scientific Reports, 10 (2020), https://doi.org/10.1038/s41598-020-78415-x.
18.
V. Howle, R. Kirby, and G. Dillon, Block preconditioners for coupled physics problems, SIAM J. Sci. Comput., 35 (2013), pp. S368--S385, https://doi.org/10.1137/120883086.
19.
J. Koko, Efficient MATLAB codes for the 2D/3D Stokes equation with the mini-element, Informatica (Vilnius), 30 (2019), pp. 243--268, https://doi.org/10.15388/Informatica.2019.205.
20.
X. Li, H. Huang, and P. Meakin, Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media, Water Resources Research, 44 (2008), https://doi.org/10.1029/2007WR006742.
21.
X. Lu, D. Giovanis, J. Yvonnet, V. Papadopoulos, F. Detrez, and J. Bai, A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites, Comput. Mech., 64 (2019), pp. 307--321, https://doi.org/10.1007/s00466-018-1643-0.
22.
MATLAB Version 9.6.0.1072779 (R2019a), The MathWorks, Natick, MA, 2019.
23.
K. Miller, ILU(k) Preconditioner, MATLAB Central File Exchange, 2020, https://www.mathworks.com/matlabcentral/fileexchange/48320-ilu-k-preconditioner.
24.
S. Molins, D. Trebotich, G. H. Miller, and C. I. Steefel, Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation, Water Resources Research, 53 (2017), pp. 3645--3661, https://doi.org/10.1002/2016WR020323.
25.
A. Muntean and C. Nikolopoulos, Colloidal transport in locally periodic evolving porous media---an upscaling exercise, SIAM J. Appl. Math., 80 (2020), pp. 448--475, https://doi.org/10.1137/17M1161531.
26.
E. Olsson, G. Kreiss, and S. Zahedi, A conservative level set method for two phase flow II, J. Comput. Phys., 225 (2007), pp. 785--807, https://doi.org/10.1016/j.jcp.2006.12.027.
27.
M. A. Peter, Coupled reaction–diffusion processes inducing an evolution of the microstructure: Analysis and homogenization, Nonlinear Anal., 70 (2009), pp. 806--821, https://doi.org/10.1016/j.na.2008.01.011.
28.
N. Ray, J. Oberlander, and P. Frolkovič, Numerical investigation of a fully coupled micro-macro model for mineral dissolution and precipitation, Comput. Geosci., 23 (2019), pp. 1173--1192, https://doi.org/10.1007/s10596-019-09876-x.
29.
N. Ray, A. Rupp, R. Schulz, and P. Knabner, Old and new approaches predicting the diffusion in porous media, Transp. Porous Media, 124 (2018), https://doi.org/10.1007/s11242-018-1099-x.
30.
M. Redeker and C. Eck, A fast and accurate adaptive solution strategy for two-scale models with continuous inter-scale dependencies, J. Comput. Phys., 240 (2013), pp. 268--283, https://doi.org/10.1016/j.jcp.2012.12.025.
31.
M. Redeker, C. Rohde, and I. Sorin Pop, Upscaling of a tri-phase phase-field model for precipitation in porous media, IMA J. Appl. Math., 81 (2016), pp. 898--939, https://doi.org/10.1093/IMAMAT/HXW023.
32.
R. Saye and J. Sethian, Analysis and applications of the Voronoi implicit interface method, J. Comput. Phys., 231 (2012), pp. 6051--6085, https://doi.org/10.1016/j.jcp.2012.04.004.
33.
R. Schulz, N. Ray, F. Frank, H. S. Mahato, and P. Knabner, Strong solvability up to clogging of an effective diffusion--precipitation model in an evolving porous medium, European J. Appl. Math., 28 (2017), pp. 179--207, https://doi.org/10.1017/S0956792516000164.
34.
R. Schulz, N. Ray, S. Zech, A. Rupp, and P. Knabner, Beyond Kozeny--Carman: Predicting the permeability in porous media, Transp. Porous Media, 130 (2019), pp. 487--512, https://doi.org/10.1007/s11242-019-01321-y.
35.
J. A. Sethian, Fast marching methods, SIAM Rev., 41 (1998), pp. 199--235, https://doi.org/10.1137/S0036144598347059.
36.
J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Vol. 3, Cambridge University Press, Cambridge, UK, 1999.
37.
S. M. Shah, J. P Crawshaw, and E. S. Boek, Berea Sandstone, https://doi.org/10.6084/m9.figshare.1200118.v2, 2014.
38.
O. Sudakov, E. Burnaev, and D. Koroteev, Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks, Comput. Geosci., 127 (2019), https://doi.org/10.1016/j.cageo.2019.02.002.
39.
J. Taylor, The motion of multiple-phase junctions under prescribed phase-boundary velocities, J. Differential Equations, 119 (1995), pp. 109--136, https://doi.org/10.1006/jdeq.1995.1085.
40.
T. van Noorden, Crystal precipitation and dissolution in a porous medium: Effective equations and numerical experiments, Multiscale Model. Simul., 7 (2009), pp. 1220--1236, https://doi.org/10.1137/080722096.
41.
H. Wu, W.-Z. Fang, Q. Kang, W.-Q. Tao, and R. Qiao, Predicting effective diffusivity of porous media from images by deep learning, Scientific Reports, 9 (2019), https://doi.org/10.1038/s41598-019-56309-x.
42.
J. Wu, X. Yin, and H. Xiao, Seeing permeability from images: Fast prediction with convolutional neural networks, Science Bulletin, 63 (2018), pp. 1215--1222, https://doi.org/10.1016/j.scib.2018.08.006.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 433 - 461
ISSN (online): 1540-3467

History

Submitted: 16 November 2020
Accepted: 2 November 2021
Published online: 22 March 2022

Keywords

  1. convolutional neural network
  2. evolving porous media
  3. micro-macro model
  4. multiphase solid
  5. reactive transport
  6. upscaling

MSC codes

  1. 35B27
  2. 68T07
  3. 76V05

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : 2170, 2339

Funding Information

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV https://doi.org/10.13039/501100006109 : 1/0709/19, APVV-19-0460

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media