# Distributed Lower Bounds for Ruling Sets

## Abstract

Given a graph $G=(V,E)$, an $(\alpha,\beta)$-ruling set is a subset $S\subseteq V$ such that the distance between any two vertices in $S$ is at least $\alpha$, and the distance between any vertex in $V$ and the closest vertex in $S$ is at most $\beta$. We present lower bounds for distributedly computing ruling sets. More precisely, for the problem of computing a $(2,\beta)$-ruling set (and hence also any $(\alpha,\beta)$-ruling set with $\alpha >2$) in the LOCAL model of distributed computing, we show the following, where $n$ denotes the number of vertices, $\Delta$ the maximum degree, and $c$ is some universal constant independent of $n$ and $\Delta$: (a) Any deterministic algorithm requires $\Omega(\min\{ \tfrac{\log\Delta}{\beta\log\log\Delta},\log_\Delta n\})$ rounds for all $\beta\le c \cdot\min\{\sqrt{\tfrac{\log\Delta}{\log\log\Delta}},\log_\Delta n\}$. By optimizing $\Delta$, this implies a deterministic lower bound of $\Omega(\sqrt{\frac{\log n}{\beta\log\log n}})$ for all $\beta\le c\,\sqrt[3]{\tfrac{\log n}{\log\log n}}$. (b) Any randomized algorithm requires $\Omega(\min\{\frac{\log\Delta}{\beta\log\log\Delta},\log_\Delta\log n\})$ rounds for all $\beta\le c\cdot\min\{\sqrt{\tfrac{\log\Delta}{\log\log\Delta}},\log_\Delta\log n\}$. By optimizing $\Delta$, this implies a randomized lower bound of $\Omega(\sqrt{\tfrac{\log \log n}{\beta\log\log\log n}})$ for all $\beta\le c\,\sqrt[3]{\tfrac{\log\log n}{\log\log\log n}}$. For $\beta > 1$, this improves on the previously best lower bound of $\Omega(\log^* n)$ rounds that follows from the 30-year-old bounds of Linial [SIAM J. Comput., 21(1992), pp. 193--201] and Naor [SIAM J. Discrete Math., 4(1991), pp. 409--412] (resp., $\Omega(1)$ rounds if $\beta \in \omega(\log^* n)$). For $\beta = 1$, i.e., for the problem of computing a maximal independent set (which is nothing else than a $(2,1)$-ruling set), our results improve on the previously best lower bound of $\Omega(\log^* n)$ on trees, as our bounds already hold on trees. For the maximal independent set on general graphs, a deterministic lower bound of $\Omega(\min\{\Delta, \log_{\Delta} n\})$ and a randomized lower bound of $\Omega(\min\{\Delta, \log_{\Delta} \log n\})$ were already known due to Balliu et al. [Proceedings of FOCS, 2019, pp. 481--497].

## References

1.
N. Alon, L. Babai, and A. Itai, A fast and simple randomized parallel algorithm for the maximal independent set problem, J. Algorithms, 7 (1986), pp. 567--583, https://doi.org/10.1016/0196-6774(86)90019-2.
2.
B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin, Network decomposition and locality in distributed computation, in Proceedings of the 30th Annual Symposium on Foundations of Computer Science, 1989, pp. 364--369, https://doi.org/10.1109/SFCS.1989.63504.
3.
A. Balliu, S. Brandt, Y. Efron, J. Hirvonen, Y. Maus, D. Olivetti, and J. Suomela, Classification of distributed binary labeling problems, in Proceedings of the 34th International Symposium on Distributed Computing, 2020.
4.
A. Balliu, S. Brandt, J. Hirvonen, D. Olivetti, M. Rabie, and J. Suomela, Lower bounds for maximal matchings and maximal independent sets, in Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer Science, Baltimore, MD, 2019, pp. 481--497, https://doi.org/10.1109/FOCS.2019.00037.
5.
A. Balliu, J. Hirvonen, D. Olivetti, and J. Suomela, Hardness of minimal symmetry breaking in distributed computing, in Proceedings of the ACM Symposium on Principles of Distributed Computing, 2019, pp. 369--378, https://doi.org/10.1145/3293611.3331605.
6.
L. Barenboim and M. Elkin, Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition, Distrib. Comput., 22 (2010), pp. 363--379, https://doi.org/10.1007/s00446-009-0088-2.
7.
L. Barenboim and M. Elkin, Deterministic distributed vertex coloring in polylogarithmic time, J. ACM, 58 (2011), pp. 23:1--23:25, https://doi.org/10.1145/2027216.2027221.
8.
L. Barenboim and M. Elkin, Distributed Graph Coloring: Fundamentals and Recent Developments, Vol. 4, 2013, Morgan & Claypool, https://doi.org/10.2200/S00520ED1V01Y201307DCT011.
9.
L. Barenboim, M. Elkin, and F. Kuhn, Distributed ($\Delta+1$)-coloring in linear (in $\Delta$) time, SIAM J. Comput., 43 (2014), pp. 72--95, https://doi.org/10.1137/12088848X.
10.
L. Barenboim, M. Elkin, S. Pettie, and J. Schneider, The locality of distributed symmetry breaking, J. ACM, 63 (2016), pp. 1--45, https://doi.org/10.1145/2903137.
11.
T. Bisht, K. Kothapalli, and S. V. Pemmaraju, Brief announcement: Super-fast $t$-ruling sets, in Proceedings of the 2014 Symposium on Principles of Distributed Computing, 2014, pp. 379--381, https://doi.org/10.1145/2611462.2611512.
12.
S. Brandt, An automatic speedup theorem for distributed problems, in Proceedings of the ACM Symposium on Principles of Distributed Computing, Toronto, 2019, pp. 379--388, https://doi.org/10.1145/3293611.3331611.
13.
S. Brandt, An Automatic Speedup Theorem for Distributed Problems, arXiv:1902.09958, 2019.
14.
S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and J. Uitto, A lower bound for the distributed lovász local lemma, in Proceedings of the 48th ACM Symposium on Theory of Computing, ACM Press, 2016, pp. 479--488, https://doi.org/10.1145/2897518.2897570.
15.
S. Brandt and D. Olivetti, Truly tight-in-$\Delta$ bounds for bipartite maximal matching and variants, in Proceedings of PODC 20, 2020, pp. 69--78, https://doi.org/10.1145/3382734.3405745.
16.
Y. Chang, T. Kopelowitz, and S. Pettie, An exponential separation between randomized and deterministic complexity in the LOCAL model, SIAM J. Comput., 48 (2019), pp. 122--143, https://doi.org/10.1137/17M1117537.
17.
Y. Chang, W. Li, and S. Pettie, An optimal distributed ($$\Delta$$+1)-coloring algorithm?, in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018, pp. 445--456, https://doi.org/10.1145/3188745.3188964.
18.
Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto, Distributed edge coloring and a special case of the constructive Lovász local lemma, ACM Trans. Algorithms, 16 (2020), pp. 8:1--8:51, https://doi.org/10.1145/3365004.
19.
K. Chung, S. Pettie, and H. Su, Distributed algorithms for the Lovász local lemma and graph coloring, Distrib. Comput., 30 (2017), pp. 261--280, https://doi.org/10.1007/s00446-016-0287-6.
20.
X. Dahan, Regular graphs of large girth and arbitrary degree, Combinatorica, 34 (2014), pp. 407--426.
21.
P. Fraigniaud, M. Heinrich, and A. Kosowski, Local conflict coloring, in Proceedings of the 57th Annual Symposium on Foundations of Computer Science, IEEE, 2016, pp. 625--634, https://doi.org/10.1109/FOCS.2016.73.
22.
B. Gfeller and E. Vicari, A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs, in Proceedings of the ACM Symposium on Principles of Distributed Computing, 2007, pp. 53--60, https://doi.org/10.1145/1281100.1281111.
23.
M. Ghaffari, An improved distributed algorithm for maximal independent set, in Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2016, pp. 270--277, https://doi.org/10.1137/1.9781611974331.ch20.
24.
M. Ghaffari, Distributed maximal independent set using small messages, in Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, 2019, pp. 805--820, https://doi.org/10.1137/1.9781611975482.50.
25.
M. Ghaffari, C. Grunau, and V. Rozhoň, Improved Deterministic Network Decomposition, CoRR, https://arxiv.org/abs/2007.08253, 2020.
26.
M. Ghaffari, J. Hirvonen, F. Kuhn, and Y. Maus, Improved distributed $\Delta$-coloring, in Proceedings of the ACM Symposium on Principles of Distributed Computing, 2018, pp. 427--436, https://doi.org/10.1145/3212734.3212764.
27.
M. Ghaffari and J. Portmann, Improved network decompositions using small messages with applications on MIS, neighborhood covers, and beyond, in Proceedings of the 33rd International Symposium on Distributed Computing, 2019, pp. 18:1--18:16, https://doi.org/10.4230/LIPIcs.DISC.2019.18.
28.
M. Göös, J. Hirvonen, and J. Suomela, Linear-in-delta lower bounds in the LOCAL model, in Proceedings of the ACM Symposium on Principles of Distributed Computing, 2014, pp. 86--95, https://doi.org/10.1145/2611462.2611467.
29.
M. Henzinger, S. Krinninger, and D. Nanongkai, A deterministic almost-tight distributed algorithm for approximating single-source shortest paths, in Proceedings of the 48th Symposium on Theory of Computing, 2016, pp. 489--498, https://doi.org/10.1145/2897518.2897638.
30.
R. M. Karp and A. Wigderson, A fast parallel algorithm for the maximal independent set problem, J. ACM, 32 (1985), pp. 762--773, https://doi.org/10.1145/4221.4226.
31.
K. Kothapalli and S. V. Pemmaraju, Super-fast 3-ruling sets, in Annual Conference on Foundations of Software Technology and Theoretical Computer Science (IARCS 2012), Vol. 18, 2012, pp. 136--147, https://doi.org/10.4230/LIPIcs.FSTTCS.2012.136.
32.
F. Kuhn, Y. Maus, and S. Weidner, Deterministic distributed ruling sets of line graphs, in Structural Information and Communication Complexity---25th International Colloquium, Ma'ale HaHamisha, Israel, 2018, pp. 193--208, https://doi.org/10.1007/978-3-030-01325-7_19.
33.
F. Kuhn, T. Moscibroda, and R. Wattenhofer, Local computation: Lower and upper bounds, J. ACM, 63 (2016), pp. 17:1--17:44, https://doi.org/10.1145/2742012.
34.
C. Lenzen and R. Wattenhofer, MIS on trees, in Proceedings of the ACM Annual Symposium on Principles of Distributed, 2011, pp. 41--48, https://doi.org/10.1145/1993806.1993813.
35.
N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., 21 (1992), pp. 193--201, https://doi.org/10.1137/0221015.
36.
M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput., 15 (1986), pp. 1036--1053, https://doi.org/10.1137/0215074.
37.
M. Naor, A lower bound on probabilistic algorithms for distributive ring coloring, SIAM J. Discrete Math., 4 (1991), pp. 409--412, https://doi.org/10.1137/0404036.
38.
M. Naor and L. J. Stockmeyer, What can be computed locally?, SIAM J. Comput., 24 (1995), pp. 1259--1277, https://doi.org/10.1137/S0097539793254571.
39.
D. Olivetti, Round Eliminator: A Tool for Automatic Speedup Simulation, https://github.com/olidennis/round-eliminator, 2019.
40.
S. Pai, G. Pandurangan, S. V. Pemmaraju, T. Riaz, and P. Robinson, Symmetry breaking in the CONGEST model: Time- and message-efficient algorithms for ruling sets, in Proceedings of 31st International Symposium on Distributed Computing, LIPIcs Leibniz Int. Proc. Inform. 91, Schloss Dagstuhl, Wadern, 2017, pp. 38:1--38:16, https://doi.org/10.4230/LIPIcs.DISC.2017.38.
41.
A. Panconesi and A. Srinivasan, On the complexity of distributed network decomposition, J. Algorithms, 20 (1996), pp. 356--374, https://doi.org/10.1006/jagm.1996.0017.
42.
D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719772.
43.
V. Rozhoň and M. Ghaffari, Polylogarithmic-time deterministic network decomposition and distributed derandomization, in Proceedings of the 52nd Annual ACM Symposium on Theory of Computing, 2020.
44.
J. Schneider, M. Elkin, and R. Wattenhofer, Symmetry breaking depending on the chromatic number or the neighborhood growth, Theoret. Comput. Sci., 509 (2013), pp. 40--50, https://doi.org/10.1016/j.tcs.2012.09.004.
45.
J. Schneider and R. Wattenhofer, A new technique for distributed symmetry breaking, in Proceedings of the 2010 Annual ACM Symposium on Principles of Distributed Computing, 2010, pp. 257--266, https://doi.org/10.1145/1835698.1835760.
46.
J. Schneider and R. Wattenhofer, An optimal maximal independent set algorithm for bounded-independence graphs, Distrib. Comput., 22 (2010), pp. 349--361, https://doi.org/10.1007/s00446-010-0097-1.

## Information & Authors

### Information

#### Published In

SIAM Journal on Computing
Pages: 70 - 115
ISSN (online): 1095-7111

#### History

Submitted: 20 November 2020
Accepted: 21 September 2021
Published online: 8 February 2022

## Metrics & Citations

### Citations

#### Cited By

There are no citations for this item