Abstract

We study long time dynamics of nonradial solutions to the focusing inhomogeneous nonlinear Schrödinger equation. By using the concentration/compactness and rigidity method, we establish a scattering criterion for nonradial solutions to the equation. We also prove a nonradial blow-up criterion for the equation whose proof makes use of localized virial estimates. As a byproduct of these criteria, we study long time dynamics of nonradial solutions to the equation with data lying below, at, and above the ground state threshold. In addition, we provide a new argument showing the existence of finite time blow-up solution to the equation with cylindrically symmetric data. The ideas developed in this paper are robust and can be applicable to other types of nonlinear Schrödinger equations.

Keywords

  1. inhomogeneous nonlinear Schrödinger equation
  2. global existence
  3. scattering
  4. blow-up

MSC codes

  1. 35Q55
  2. 35B44

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. H. Ardila and M. Cardoso, Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 20 (2021), pp. 101--119, https://doi.org/10.3934/cpaa.2020259.
2.
A. H. Ardila, V. D. Dinh, and L. Forcella, Sharp conditions for scattering and blow-up for a system of NLS arising in optical materials with $\chi^3$ nonlinear response, Comm. Partial Differential Equations, (2021), https://doi.org/10.1080/03605302.2021.1925916.
3.
A. K. Arora, B. Dodson, and J. Murphy, Scattering below the ground state for the 2$d$ radial nonlinear Schrödinger equation, Proc. Amer. Math. Soc., 148 (2020), pp. 1653--1663, https://doi.org/10.1090/proc/14824.
4.
J. Bellazzini and L. Forcella, Dynamical Collapse of Cylindrical Symmetric Dipolar Bose-Einstein Condensates, preprint, https://arxiv.org/abs/2005.02894v1, 2020.
5.
J. Bellazzini, L. Forcella, and V. Georgiev, Ground State Energy Threshold and Blow-Up for NLS with Competing Nonlinearities, preprint, https://arxiv.org/abs/2012.10977, 2020.
6.
L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 202 (2021), 112118, https://doi.org/10.1016/j.na.2020.112118.
7.
L. Campos and M. Cardoso, Blow Up and Scattering Criteria Above the Threshold for the Focusing Inhomogeneous Nonlinear Schrödinger Equation, preprint, https://arxiv.org/abs/2001.11613, 2020.
8.
M. Cardoso, L. G. Farah, C. M. Guzmán, and J. Murphy, Scattering Below the Ground State for the Intercritical Non-radial Inhomogeneous NLS, preprint, https://arxiv.org/abs/2007.06165, 2020.
9.
T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003, https://doi.org/10.1090/cln/010.
10.
J. Chen, On a class of nonlinear inhomogeneous Schrödinger equation, J. Appl. Math. Comput., 32 (2010), pp. 237--253, https://doi.org/10.1007/s12190-009-0246-5.
11.
J. Chen and B. Guo, Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), pp. 357--367, https://doi.org/10.3934/dcdsb.2007.8.357.
12.
Y. Cho, S. Hong, and K. Lee, On the global well-posedness of focusing energy-critical inhomogeneous NLS, J. Evol. Equ., 20 (2020), pp. 1349--1380, https://doi.org/10.1007/s00028-020-00558-1.
13.
A. De Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2005), pp. 1157--1177, https://doi.org/10.1007/s00023-005-0236-6.
14.
V. D. Dinh, Scattering theory in weighted $L^2$ space for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, Adv. Pure Appl. Math., to appear.
15.
V. D. Dinh, Blowup of $H^1$ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174 (2018), pp. 169--188, https://doi.org/10.1016/j.na.2018.04.024.
16.
V. D. Dinh, Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 19 (2019), pp. 411--434, https://doi.org/10.1007/s00028-019-00481-0.
17.
V. D. Dinh, A unified approach for energy scattering for focusing nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 40 (2020), pp. 6441--6471, https://doi.org/10.3934/dcds.2020286.
18.
V. D. Dinh, Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions, J. Hyperbolic Differ. Equ., 18 (2021), pp. 1--28, https://doi.org/10.1142/S0219891621500016.
19.
V. D. Dinh and L. Forcella, Blow-Up Results for Systems of Nonlinear Schrödinger Equations with Quadratic Interaction, preprint, https://arxiv.org/abs/2010.14595, 2020.
20.
V. D. Dinh, L. Forcella, and H. Hajaiej, Mass-Energy Threshold Dynamics for Dipolar Quantum Gases, preprint, https://arxiv.org/abs/2009.05933, 2021.
21.
B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), pp. 4859--4867, https://doi.org/10.1090/proc/13678.
22.
T. Duyckaerts, J. Holmer, and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), pp. 1233--1250, https://doi.org/10.4310/MRL.2008.v15.n6.a13.
23.
T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing \textup3D cubic Schrödinger equation, Rev. Mat. Iberoam., 26 (2010), pp. 1--56, https://doi.org/10.4171/RMI/592.
24.
T. Duyckaerts and S. Roudenko, Going beyond the threshold: Scattering and blow-up in the focusing NLS equation, Comm. Math. Phys., 334 (2015), pp. 1573--1615, https://doi.org/10.1007/s00220-014-2202-y.
25.
D. Fang, J. Xie, and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), pp. 2037--2062, https://doi.org/10.1007/s11425-011-4283-9.
26.
L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16 (2016), pp. 193--208, https://doi.org/10.1007/s00028-015-0298-y.
27.
L. G. Farah and C. M. Guzmán, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations, 262 (2017), pp. 4175--4231, https://doi.org/10.1016/j.jde.2017.01.013.
28.
L. G. Farah and C. M. Guzmán, Scattering for the radial focusing inhomogeneous NLS equation in higher dimensions, Bull. Braz. Math. Soc. (N.S.), 51 (2020), pp. 449--512, https://doi.org/10.1007/s00574-019-00160-1.
29.
G. Fibich and X.-P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Phys. D, 175 (2003), pp. 96--108, https://doi.org/10.1016/S0167-2789(02)00626-7.
30.
D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), pp. 1--24, https://doi.org/10.1142/S0219891605000361.
31.
R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, J. Math. Kyoto Univ., 45 (2005), pp. 145--158, https://doi.org/10.1215/kjm/1250282971.
32.
Y. Gao and Z. Wang, Below and beyond the mass-energy threshold: Scattering for the Hartree equation with radial data in $d\geq 5$, Z. Angew. Math. Phys., 71 (2020), 52, https://doi.org/10.1007/s00033-020-1274-0.
33.
F. Genoud, A uniqueness result for $\Delta u-\lambda u+V(|x|)u^p=0$ on $\Bbb R^2$, Adv. Nonlinear Stud., 11 (2011), pp. 483--491, https://doi.org/10.1515/ans-2011-0301.
34.
F. Genoud and C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), pp. 137--186, https://doi.org/10.3934/dcds.2008.21.137.
35.
T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana, 55 (2000), pp. 835--842.
36.
R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), pp. 1794--1797, https://doi.org/10.1063/1.523491.
37.
C. D. Guevara, Global behavior of finite energy solutions to the $d$-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. eXpress, 2014 (2014), pp. 177--243, https://doi.org/10.1093/amrx/abt008.
38.
C. M. Guzmán, On well posedness for the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. Real World Appl., 37 (2017), pp. 249--286, https://doi.org/10.1016/j.nonrwa.2017.02.018.
39.
L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), pp. 813--840.
40.
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955--980.
41.
C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), pp. 645--675, https://doi.org/10.1007/s00222-006-0011-4.
42.
C. S. Liu and V. K. Tripathi, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1 (1994), pp. 3100--3103, https://doi.org/10.1063/1.870501.
43.
Y. Liu, X.-P. Wang, and K. Wang, Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity, Trans. Amer. Math. Soc., 358 (2006), pp. 2105--2122, https://doi.org/10.1090/S0002-9947-05-03763-3.
44.
Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), pp. 1903--1908, https://doi.org/10.1016/S0362-546X(96)00036-3.
45.
F. Merle, Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u-k(x)|u|^{4/N}u$ in ${\bf R}^N$, Ann. Inst. H. Poincaré Phys. Théor., 64 (1996), pp. 33--85, http://www.numdam.org/item?id=AIHPA_1996__64_1_33_0.
46.
C. Miao, J. Murphy, and J. Zheng, Scattering for the non-radial inhomogeneous NLS, Math. Res. Lett., to appear.
47.
B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Scientific & Technical, Harlow, 1990.
48.
P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., 24 (2011), pp. 471--546, https://doi.org/10.1090/S0894-0347-2010-00688-1.
49.
W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), pp. 149--162.
50.
C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Appl. Math. Sci. 139, Springer-Verlag, New York, 1999.
51.
T. Tao, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., 1 (2004), pp. 1--48, https://doi.org/10.4310/DPDE.2004.v1.n1.a1.
52.
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Reg. Conf. Ser. Math. 106, American Mathematical Society, Providence, RI, 2006, https://doi.org/10.1090/cbms/106.
53.
J. F. Toland, Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line, Proc. Roy. Soc. Edinburgh Sect. A, 97 (1984), pp. 259--263, https://doi.org/10.1017/S0308210500032042.
54.
I. Towers and B. A. Malomed, Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity, J. Opt. Soc. Amer. B Opt. Phys., 19 (2002), pp. 537--543, https://doi.org/10.1364/JOSAB.19.000537.
55.
C. Xu and T. Zhao, A Remark on the Scattering Theory for the 2D Radial Focusing INLS, preprint, https://arxiv.org/abs/1908.00743, 2019.
56.
E. Yanagida, Uniqueness of positive radial solutions of $\Delta u+g(r)u+h(r)u^p=0$ in ${r}^n$, Arch. Rational Mech. Anal., 115 (1991), pp. 257--274, https://doi.org/10.1007/BF00380770.
57.
S. Zhu, Blow-up solutions for the inhomogeneous Schrödinger equation with $L^2$ supercritical nonlinearity, J. Math. Anal. Appl., 409 (2014), pp. 760--776, https://doi.org/10.1016/j.jmaa.2013.07.029.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 4765 - 4811
ISSN (online): 1095-7154

History

Submitted: 30 November 2020
Accepted: 10 May 2021
Published online: 26 August 2021

Keywords

  1. inhomogeneous nonlinear Schrödinger equation
  2. global existence
  3. scattering
  4. blow-up

MSC codes

  1. 35Q55
  2. 35B44

Authors

Affiliations

Funding Information

Agence Nationale de la Recherche https://doi.org/10.13039/501100001665 : ANR-11-LABX-0007-01

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media