Abstract

We present a large-amplitude existence theory for two-dimensional solitary waves propagating through a two layer body of water. The domain of the fluid is bounded below by an impermeable flat ocean floor and above by a free boundary at constant pressure. For any piecewise smooth upstream density distribution and laminar background current, we construct a global curve of solutions. This curve bifurcates from the background current and, following along the curve, we find waves that are arbitrarily close to having horizontal stagnation points. The small-amplitude waves are constructed using a center manifold reduction technique. The large-amplitude theory is obtained through analytical global bifurcation together with refined qualitative properties of the waves.

Keywords

  1. water waves
  2. global bifurcation
  3. solitary waves
  4. stratification
  5. internal waves

MSC codes

  1. 35B32
  2. 35Q31
  3. 35J60
  4. 35J66
  5. 76B15
  6. 76B55

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. W. Alt, L. A. Caffarelli, and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), pp. 431--461.
2.
A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. (4), 58 (1962), pp. 303--315.
3.
C. J. Amick, Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 11 (1984), pp. 441--499.
4.
C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. A, 303 (1981), pp. 633--669.
5.
C. J. Amick and J. F. Toland, On solitary water-waves of finite amplitude, Arch. Ration. Mech. Anal., 76 (1981), pp. 9--95.
6.
C. J. Amick and R. E. L. Turner, A global theory of internal solitary waves in two-fluid systems, Trans. Amer. Math. Soc., 298 (1986), pp. 431--484.
7.
C. J. Amick and R. E. L. Turner, Center manifolds in equations from hydrodynamics, NoDEA Nonlinear Differential Equations Appl., 1 (1994), pp. 47--90.
8.
A. Akers and S. Walsh, Solitary water waves with discontinuous vorticity, J. Math. Pures Appl. (9), 124 (2019), pp. 220--272.
9.
J. T. Beale, The existence of solitary water waves, Comm. Pure Appl. Math., 30 (1977), pp. 373--389.
10.
T. B. Benjamin, A unified theory of conjugate flows, Philos. Trans. A, 269 (1971), pp. 587--643.
11.
T. J. Bridges, M. D. Groves, and D. P. Nicholls, Lectures on the Theory of Water Waves, London Math. Soc. Lecture Note Ser. 426, Cambridge University Press, Cambridge, 2016.
12.
H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), pp. 237--275.
13.
H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), pp. 1--37.
14.
B. Buffoni and J. Toland, Analytic theory of global bifurcation. An introduction, Princeton Ser. Appl. Math., Princeton University Press, Princeton, NJ, 2003.
15.
L. A. Caffarelli, D. Jerison, and C. E. Kenig, Some new monotonicity theorems with applications to free boundary problems, Ann. of Math. (2), 155 (2002), pp. 369--404.
16.
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, SIAM, Philadelphia, 2011.
17.
A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), pp. 481--527.
18.
R. M. Chen and S. Walsh, Continuous dependence on the density for stratified steady water waves, Arch. Ration. Mech. Anal., 219 (2016), pp. 741--792.
19.
R. M. Chen, S. Walsh, and M. H. Wheeler, Existence and qualitative theory for stratified solitary water waves, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), pp. 517--576.
20.
R. M. Chen, S. Walsh, and M. H. Wheeler, Center Manifolds Without a Phase Space for Quasilinear Problems in Elasticity, Biology, and Hydrodynamics, preprint, arXiv:1907.04370, 2019.
21.
R. M. Chen, S. Walsh, and M. H. Wheeler, Global Bifurcation for Monotone Fronts of Elliptic Equations, preprint, arXiv:2005.00651, 2020.
22.
E. N. Dancer, Bifurcation theory for analytic operators, Proc. Lond. Math. Soc. (3), 26 (1973), pp. 359--384.
23.
E. N. Dancer, Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. Lond. Math. Soc. (3), 27 (1973), pp. 747--765.
24.
M.-L. Dubreil-Jacotin, Sur la détermination rigoureuse des ondes permanentes périodiques d'ampleur finie, NUMDAM, 1934.
25.
L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Math. 28, Cambridge University Press, Cambridge, 2000.
26.
B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), pp. 209--243.
27.
M. D. Groves and E. Wahlén, Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity, Phys. D, 237 (2008), pp. 1530--1538.
28.
K. R. Helfrich and W. K. Melville, Long nonlinear internal waves, Annu. Rev. Fluid Mech. 38, 2006, pp. 395--425.
29.
V. M. Hur, Exact solitary water waves with vorticity, Arch. Ration. Mech. Anal., 188 (2008), pp. 213--244.
30.
K. Kirchgässner, Wave-solutions of reversible systems and applications, J. Differential Equations, 45 (1982), pp. 113--127.
31.
V. Kozlov, E. Lokharu, and M. H. Wheeler, Nonexistence of subcritical solitary waves, 241 (2021), pp. 535--552.
32.
G. Keady and W. G. Pritchard, Bounds for surface solitary waves, Math. Proc. Cambridge Philos. Soc., 76 (1974), pp. 345--358.
33.
M. S. Longuet-Higgins and J. D. Fenton, On the mass, momentum, energy and circulation of a solitary wave. II, Proc. A, 340 (1974), pp. 471--493.
34.
C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations, 16 (1991), pp. 585--615.
35.
L. A. Maia, Symmetry of internal waves, Nonlinear Anal., 28 (1997), pp. 87--102.
36.
N. G. Meyers, An $L^{p}$e-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), pp. 189--206.
37.
A. Mielke, A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Differential Equations, 65 (1986), pp. 68--88.
38.
A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., 10 (1988), pp. 51--66.
39.
A. J. S. Russell, Report on waves, in Report of the 14th Meeting of the British Association for the Advancement of Science, 1844, pp. 311--390.
40.
J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43 (1971), pp. 304--318.
41.
R. D. W. I. Susanto, L. Mitnik, and Q. Zheng, Ocean internal waves observed, Oceanography, 18 (2005), 80.
42.
V. P. Starr, Momentum and energy integrals for gravity waves of finite height, J. Marine Res., 6 (1947), pp. 175--193.
43.
A. M. Ter-Krikorov, The existence of periodic waves which degenerate into a solitary wave, J. Appl. Math. Mech., 24 (1960), pp. 930--949.
44.
R. E. L. Turner and J.-M. Vanden-Broeck, Broadening of interfacial solitary waves, Phys. Fluids, 31 (1988), pp. 2486--2490.
45.
E. Varvaruca, On the existence of extreme waves and the Stokes conjecture with vorticity, J. Differential Equations, 246 (2009), pp. 4043--4076.
46.
S. Walsh, Some criteria for the symmetry of stratified water waves, Wave Motion, 46 (2009), pp. 350--362.
47.
S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), pp. 1054--1105.
48.
S. Walsh, Steady stratified periodic gravity waves with surface tension II: Global bifurcation, Discrete Contin. Dyn. Syst., 34 (2014), pp. 3287--3315.
49.
L.-J. Wang, Small-amplitude solitary and generalized solitary traveling waves in a gravity two-layer fluid with vorticity, Nonlinear Anal., 150 (2017), pp. 159--193.
50.
M. H. Wheeler, Large-amplitude solitary water waves with vorticity, SIAM J. Math. Anal., 45 (2013), pp. 2937--2994.
51.
M. H. Wheeler, The Froude number for solitary water waves with vorticity, J. Fluid Mech., 768 (2015), pp. 91--112.
52.
M. H. Wheeler, Solitary water waves of large amplitude generated by surface pressure, Arch. Ration. Mech. Anal., 218 (2015), pp. 1131--1187.
53.
C.-S. Yih, Dynamics of Nonhomogeneous Fluids, Macmillan, New York, London, 1965.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 4812 - 4864
ISSN (online): 1095-7154

History

Submitted: 1 December 2020
Accepted: 27 April 2021
Published online: 30 August 2021

Keywords

  1. water waves
  2. global bifurcation
  3. solitary waves
  4. stratification
  5. internal waves

MSC codes

  1. 35B32
  2. 35Q31
  3. 35J60
  4. 35J66
  5. 76B15
  6. 76B55

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-1812436

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media