Abstract.

We study the geodesic Voronoi diagram of a set \(S\) of \(n\) linearly moving sites inside a static simple polygon \(P\) with \(m\) vertices. We identify all events where the structure of the Voronoi diagram changes, bound the number of such events, and then develop a kinetic data structure (KDS) that maintains the geodesic Voronoi diagram as the sites move. To this end, we first analyze how often a single bisector, defined by two sites, or a single Voronoi center, defined by three sites, can change. For both these structures we prove that the number of such changes is at most \(O(m^3)\), and that this is tight in the worst case. Moreover, we develop compact, responsive, local, and efficient KDSs for both structures. Our data structures use linear space and process a worst-case optimal number of events. Our bisector and Voronoi center KDSs handle each event in \(O(\log^2 m)\) time. Both structures can be extended to efficiently support updating the movement of the sites as well. Using these data structures as building blocks, we obtain a compact KDS for maintaining the full geodesic Voronoi diagram.

Keywords

  1. computational geometry
  2. kinetic data structure
  3. simple polygon
  4. geodesic distance
  5. geodesic Voronoi diagram

MSC codes

  1. 68P05
  2. 68Q25
  3. 68U05

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

We would like to thank Man-Kwun Chiu and Yago Diez for interesting discussions during the initial stage of this research. We would also like to thank the anonymous reviewers, who helped us significantly improve the presentation of this paper and make it more accessible to a wider audience.

References

1.
P. K. Agarwal, L. Arge, and F. Staals, Improved dynamic geodesic nearest neighbor searching in a simple polgyon, in Proc. 34th Annual Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc. Inform. 99, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Germany, 2018, 4, https://doi.org/10.4230/LIPIcs.SoCG.2018.4.
2.
P. K. Agarwal, H. Kaplan, N. Rubin, and M. Sharir, Kinetic Voronoi diagrams and Delaunay triangulations under polygonal distance functions, Discrete Comput. Geom., 54 (2015), pp. 871–904, https://doi.org/10.1007/s00454-015-9729-3.
3.
O. Aichholzer, T. Hackl, M. Korman, A. Pilz, and B. Vogtenhuber, Geodesic-preserving polygon simplification, Int. J. Comput. Geom. Appl., 24 (2014), pp. 307–323, https://doi.org/10.1142/S0218195914600097.
4.
B. Aronov, On the geodesic Voronoi diagram of point sites in a simple polygon, Algorithmica, 4 (1989), pp. 109–140.
5.
B. Aronov, S. Fortune, and G. Wilfong, The furthest-site geodesic Voronoi diagram, Discrete Comput. Geom., 9 (1993), pp. 217–255.
6.
B. Aronov, L. J. Guibas, M. Teichmann, and L. Zhang, Visibility queries and maintenance in simple polygons, Discrete Comput. Geom., 27 (2002), pp. 461–483, https://doi.org/10.1007/s00454-001-0089-9.
7.
S. W. Bae, M. Korman, and Y. Okamoto, Computing the geodesic centers of a polygonal domain, Comput. Geom., 77 (2019), pp. 3–9, https://doi.org/10.1016/j.comgeo.2015.10.009.
8.
J. Basch, L. J. Guibas, and J. Hershberger, Data structures for mobile data, J. Algorithms, 31 (1999), pp. 1–28, https://doi.org/10.1006/jagm.1998.0988.
9.
G. S. Brodal and R. Jacob, Dynamic planar convex hull, in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 617–626, https://doi.org/10.1109/SFCS.2002.1181985.
10.
M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 3rd ed., Springer, Berlin, 2008.
11.
M. de Berg, A. F. van der Stappen, J. Vleugels, and M. J. Katz, Realistic input models for geometric algorithms, Algorithmica, 34 (2002), pp. 81–97, https://doi.org/10.1007/s00453-002-0961-x.
12.
E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke, The Open Problems Project, https://topp.openproblem.net/.
13.
H. Edelsbrunner and E. P. Mücke, Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graphics, 9 (1990), pp. 66–104, https://doi.org/10.1145/77635.77639.
14.
J. E. Goodman and J. O’Rourke, Handbook of Discrete and Computational Geometry, Discrete Math. Appl., Chapman & Hall/CRC, Boca Raton, FL, 2004.
15.
L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons, Algorithmica, 2 (1987), pp. 209–233, https://doi.org/10.1007/BF01840360.
16.
L. J. Guibas, J. S. B. Mitchell, and T. Roos, Voronoi diagrams of moving points in the plane, in Graph-Theoretic Concepts in Computer Science, Springer, Berlin, Heidelberg, 1992, pp. 113–125.
17.
M. R. Henzinger and V. King, Randomized fully dynamic graph algorithms with polylogarithmic time per operation, J. ACM, 46 (1999), pp. 502–516, https://doi.org/10.1145/320211.320215.
18.
J. Hershberger and S. Suri, An optimal algorithm for Euclidean shortest paths in the plane, SIAM J. Comput., 28 (1999), pp. 2215–2256, https://doi.org/10.1137/S0097539795289604.
19.
M. I. Karavelas and L. J. Guibas, Static and kinetic geometric spanners with applications, in Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, SIAM, Philadelphia, 2001, pp. 168–176.
20.
M. Korman, A. van Renssen, M. Roeloffzen, and F. Staals, Kinetic geodesic Voronoi diagrams in a simple polygon, in Proceedings of the 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), LIPIcs. Leibniz Int. Proc. Inform. 168, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Germany, 2020, 75, https://doi.org/10.4230/LIPIcs.ICALP.2020.75.
21.
C.-H. Liu, A nearly optimal algorithm for the geodesic Voronoi diagram of points in a simple polygon, in 34th International Symposium on Computational Geometry (SoCG 2018), LIPIcs. Leibniz Int. Proc. Inform. 99, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, Germany, 2018, 58, https://doi.org/10.4230/LIPIcs.SoCG.2018.58.
22.
A. Lubiw, J. Snoeyink, and H. Vosoughpour, Visibility graphs, dismantlability, and the cops and robbers game, Comput. Geom., 66 (2017), pp. 14–27, https://doi.org/10.1016/j.comgeo.2017.07.001.
23.
J. S. B. Mitchell, A new algorithm for shortest paths among obstacles in the plane, Ann. Math. Artif. Intell., 3 (1991), pp. 83–105, https://doi.org/10.1007/BF01530888.
24.
J. S. B. Mitchell, Shortest paths among obstacles in the plane, in Proceedings of the 9th Annual ACM Symposium on Computational Geometry, 1993, pp. 308–317.
25.
E. Oh, Optimal algorithm for geodesic nearest-point Voronoi diagrams in simple polygons, in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2019, pp. 391–409, https://doi.org/10.1137/1.9781611975482.25.
26.
E. Oh and H.-K. Ahn, Voronoi diagrams for a moderate-sized point-set in a simple polygon, Discrete Comput. Geom., 63 (2020), pp. 418–454, https://doi.org/10.1007/s00454-019-00063-4.
27.
E. Oh, S. W. Bae, and H.-K. Ahn, Computing a geodesic two-center of points in a simple polygon, Comput. Geom., 82 (2019), pp. 45–59, https://doi.org/10.1016/j.comgeo.2019.05.001.
28.
E. Oh, J. D. Carufel, and H. Ahn, The geodesic 2-center problem in a simple polygon, Comput. Geom, 74 (2018), pp. 21–37, https://doi.org/10.1016/j.comgeo.2018.02.008.
29.
E. Papadopoulou and D.-T. Lee, A new approach for the geodesic Voronoi diagram of points in a simple polygon and other restricted polygonal domains, Algorithmica, 20 (1998), pp. 319–352.
30.
R. Pollack, M. Sharir, and G. Rote, Computing the geodesic center of a simple polygon, Discrete Comput. Geom., 4 (1989), pp. 611–626, https://doi.org/10.1007/BF02187751.
31.
N. Rubin, On kinetic Delaunay triangulations: A near-quadratic bound for unit speed motions, J. ACM, 62 (2015), 25, https://doi.org/10.1145/2746228.
32.
M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, Cambridge, UK, 1995.
33.
D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System Sci., 26 (1983), pp. 362–391, https://doi.org/10.1016/0022-0000(83)90006-5.
34.
S. Suri, A linear time algorithm with minimum link paths inside a simple polygon, Comput. Vision Graphics Image Process., 35 (1986), pp. 99–110, https://doi.org/10.1016/0734-189X(86)90127-1.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 2276 - 2311
ISSN (online): 1095-7146

History

Submitted: 8 December 2020
Accepted: 5 July 2023
Published online: 12 October 2023

Keywords

  1. computational geometry
  2. kinetic data structure
  3. simple polygon
  4. geodesic distance
  5. geodesic Voronoi diagram

MSC codes

  1. 68P05
  2. 68Q25
  3. 68U05

Authors

Affiliations

Matias Korman
Siemens Electronic Design Automation, Wilsonville, OR 97070 USA.
School of Computer Science, University of Sydney, Sydney, NSW 2006, Australia.
Marcel Roeloffzen
Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven, 5612 AZ, The Netherlands.
Frank Staals
Department of Information and Computing Sciences, Utrecht University, Utrecht, 3584 CS, The Netherlands.

Funding Information

Funding: The first author was partially supported by MEXT KAKENHI 17K12635 and the NSF award CCF-1422311. The second and third authors were supported by JST ERATO Grant JPMJER1201, Japan. The fourth author was supported by The Netherlands Organisation for Scientific Research under project 612.001.651.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media