Abstract

This paper considers the use of robust principal component analysis (RPCA) in a CUR decomposition framework and applications thereof. Our main algorithms produce a robust version of column-row factorizations of matrices $D=L+S$, where $L$ is low-rank and $S$ contains sparse outliers. These methods yield interpretable factorizations at low computational cost and provide new CUR decompositions that are robust to sparse outliers, in contrast to previous methods. We consider two key imaging applications of RPCA: video foreground-background separation and face modeling. This paper examines the qualitative behavior of our robust CUR decompositions on the benchmark videos and face datasets and finds that our method works as well as standard RPCA while being significantly faster. Additionally, we consider hybrid randomized and deterministic sampling methods which produce a compact CUR decomposition of a given matrix and apply this to video sequences to produce canonical frames thereof.

Keywords

  1. CUR decomposition
  2. RPCA
  3. robust CUR
  4. low-rank matrix approximation
  5. interpolative decompositions
  6. robust algorithms

MSC codes

  1. 15A23
  2. 65F30
  3. 68P20
  4. 68W20
  5. 68W25
  6. 68Q25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Aldroubi, K. Hamm, A. B. Koku, and A. Sekmen, CUR decompositions, similarity matrices, and subspace clustering, Front. Appl. Math. Stat., 4 (2019), p. 65.
2.
A. Aldroubi, A. Sekmen, A. B. Koku, and A. F. Cakmak, Similarity matrix framework for data from union of subspaces, Appl. Comput. Harmon. Anal., 45 (2018), pp. 425--435.
3.
H. Avron and C. Boutsidis, Faster subset selection for matrices and applications, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1464--1499.
4.
J. J. Bartholdi, III, A good submatrix is hard to find, Oper. Res. Lett., 1 (1982), pp. 190--193.
5.
A. Bhaskara, A. Rostamizadeh, J. Altschuler, M. Zadimoghaddam, T. Fu, and V. Mirrokni, Greedy column subset selection: New bounds and distributed algorithms, in Proceedings of the 33rd International Conference on Machine Learning, 2016, pp. 2539--2548.
6.
C. Boutsidis, P. Drineas, and M. Magdon-Ismail, Near-optimal column-based matrix reconstruction, SIAM J. Comput., 43 (2014), pp. 687--717.
7.
C. Boutsidis and D. P. Woodruff, Optimal CUR matrix decompositions, SIAM J. Comput., 46 (2017), pp. 543--589.
8.
T. Bouwmans, Subspace learning for background modeling: A survey, Recent Patents Comput. Sci., 2 (2009), pp. 223--234.
9.
T. Bouwmans, S. Javed, H. Zhang, Z. Lin, and R. Otazo, On the applications of robust PCA in image and video processing, Proc. IEEE, 106 (2018), pp. 1427--1457.
10.
H. Cai, Accelerating Truncated Singular-Value Decomposition: A Fast and Provable Method for Robust Principal Component Analysis, PhD thesis, University of Iowa, 2018.
11.
H. Cai, J.-F. Cai, T. Wang, and G. Yin, Accelerated structured alternating projections for robust spectrally sparse signal recovery, IEEE Trans. Signal Process., 69 (2021), pp. 809--821.
12.
H. Cai, J.-F. Cai, and K. Wei, Accelerated alternating projections for robust principal component analysis, J. Mach. Learn. Res., 20 (2019), pp. 685--717.
13.
H. Cai, K. Hamm, L. Huang, J. Li, and T. Wang, Rapid robust principal component analysis: CUR accelerated inexact low rank estimation, IEEE Signal Process. Lett., 28 (2021), pp. 116--120.
14.
E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, J. ACM, 58 (2011), pp. 1--37.
15.
V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, Rank-sparsity incoherence for matrix decomposition, SIAM J. Optim., 21 (2011), pp. 572--596.
16.
J. Chiu and L. Demanet, Sublinear randomized algorithms for skeleton decompositions, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1361--1383.
17.
A. Çivril, Column subset selection problem is UG-hard, J. Comput. System Sci., 80 (2014), pp. 849--859.
18.
M. Dereziński and M. K. Warmuth, Reverse iterative volume sampling for linear regression, J. Mach. Learn. Res., 19 (2018), pp. 853--891.
19.
A. Deshpande and L. Rademacher, Efficient volume sampling for row/column subset selection, in Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2010, pp. 329--338.
20.
P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition, SIAM J. Comput., 36 (2006), pp. 184--206.
21.
P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff, Fast approximation of matrix coherence and statistical leverage, J. Mach. Learn. Res., 13 (2012), pp. 3475--3506.
22.
P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Relative-error CUR matrix decompositions, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 844--881.
23.
E. Elhamifar and R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013), pp. 2765--2781.
24.
A. Georghiades, P. Belhumeur, and D. Kriegman, From few to many: Illumination cone models for face recognition under variable lighting and pose, IEEE Trans. Pattern Anal. Mach. Intelligence, 23 (2001), pp. 643--660.
25.
S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, How to find a good submatrix, in Matrix Methods: Theory, Algorithms and Applications: Dedicated to the Memory of Gene Golub, World Scientific, River Edge, NJ, 2010, pp. 247--256.
26.
S. A. Goreĭnov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra Appl., 261 (1997), pp. 1--21.
27.
S. A. Goreĭnov, N. L. Zamarashkin, and E. E. Tyrtyshnikov, Pseudo-skeleton approximations, Dokl. Akad. Nauk, 343 (1995), pp. 151--152.
28.
S. A. Goreĭnov, N. L. Zamarashkin, and E. E. Tyrtyshnikov, Pseudo-skeleton approximations by matrices of maximal volume, Math. Notes, 62 (1997), pp. 515--519.
29.
D. Gross and V. Nesme, Note on Sampling Without Replacing from a Finite Collection of Matrices, arXiv preprint, arXiv:1001.2738 [CS.IT], 2010.
30.
M. Gu and S. C. Eisenstat, Downdating the singular value decomposition, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 793--810.
31.
B. D. Haeffele, C. You, and R. Vidal, A critique of self-expressive deep subspace clustering, International Conference on Learning Representations, 2021, https://openreview.net/pdf?id=FOyuZ26emy.
32.
K. Hamm and L. Huang, Perturbations of CUR decompositions, SIAM J. Matrix Anal. Appl., 42 (2021), pp. 351--375.
33.
K. Hamm and L. Huang, Perspectives on CUR decompositions, Appl. Comput. Harmon. Anal., 48 (2020), pp. 1088--1099.
34.
W.-D. Jang, C. Lee, and C.-S. Kim, Primary object segmentation in videos via alternate convex optimization of foreground and background distributions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 696--704.
35.
X. Li and Y. Pang, Deterministic column-based matrix decomposition, IEEE Trans. Knowledge and Data Engrg., 22 (2010), pp. 145--149.
36.
G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, Robust recovery of subspace structures by low-rank representation, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2012), pp. 171--184.
37.
M. W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 697--702.
38.
A. Mikhalev and I. V. Oseledets, Rectangular maximum-volume submatrices and their applications, Linear Algebra Appl., 538 (2018), pp. 187--211.
39.
P. Netrapalli, U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain, Non-convex robust PCA, Adv. Neural Inf. Process. Syst., 27 (2014), pp. 1107--1115.
40.
I. Oseledets and E. Tyrtyshnikov, Tt-cross approximation for multidimensional arrays, Linear Algebra Appl., 432 (2010), pp. 70--88.
41.
A. Osinsky, Rectangular Maximum Volume and Projective Volume Search Algorithms, arXiv preprint, arXiv:1809.02334 [math.NA], 2018.
42.
A. Osinsky and N. L. Zamarashkin, Pseudo-skeleton approximations with better accuracy estimates, Linear Algebra Appl., 537 (2018), pp. 221--249.
43.
Y. Shitov, Column subset selection is NP-complete, Linear Algebra Appl., 610 (2021), pp. 52--58.
44.
D. C. Sorensen and M. Embree, A DEIM induced CUR factorization, SIAM J. Sci. Comput., 38 (2016), pp. A1454--A1482.
45.
G. W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares problems, SIAM Rev., 19 (1977), pp. 634--662.
46.
S.Wang and Z.Zhang, Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling, J. Mach. Learn. Res., 14 (2013), pp. 2729--2769.
47.
J. A. Tropp, Column subset selection, matrix factorization, and eigenvalue optimization, in Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2009, pp. 978--986.
48.
J. A. Tropp, Improved analysis of the subsampled randomized Hadamard transform, Adv. Adapt. Data Anal., 3 (2011), pp. 115--126.
49.
R. Vidal, Subspace clustering, IEEE Signal Process Mag., 28 (2011), pp. 52--68.
50.
S. Voronin and P.-G. Martinsson, Efficient algorithms for CUR and interpolative matrix decompositions, Adv. Comput. Math., 43 (2017), pp. 495--516.
51.
J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. Trans. Inform., 31 (2008), pp. 210--227.
52.
H. Xu, C. Caramanis, and S. Sanghavi, Robust PCA via outlier pursuit, IEEE Trans. Inform. Theory, 58 (2012), pp. 3047--3064.
53.
X. Yi, D. Park, Y. Chen, and C. Caramanis, Fast algorithms for robust PCA via gradient descent, in Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016, pp. 4152--4160.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 1472 - 1503
ISSN (online): 1936-4954

History

Submitted: 28 December 2020
Accepted: 20 July 2021
Published online: 18 October 2021

Keywords

  1. CUR decomposition
  2. RPCA
  3. robust CUR
  4. low-rank matrix approximation
  5. interpolative decompositions
  6. robust algorithms

MSC codes

  1. 15A23
  2. 65F30
  3. 68P20
  4. 68W20
  5. 68W25
  6. 68Q25

Authors

Affiliations

Funding Information

Army Research Office https://doi.org/10.13039/100000183 : W911NF-20-1-0076
Division of Mathematical Sciences https://doi.org/10.13039/100000121 : DMS-1740325, DMS-2011140

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media