Singular Limit for Reactive Diffusive Transport Through an Array of Thin Channels in case of Critical Diffusivity

Abstract

We consider a nonlinear reaction-diffusion equation in a domain consisting of two bulk regions connected via small channels periodically distributed within a thin layer. The height and the thickness of the channels are of order $\epsilon$, and the equation inside the layer depends on the parameter $\epsilon$. We consider the critical scaling of the diffusion coefficients in the channels and nonlinear Neumann boundary condition on the channels' lateral boundaries. We derive effective models in the limit $\epsilon \to 0 $, when the channel domain is replaced by an interface $\Sigma$ between the two bulk domains. Due to the critical size of the diffusion coefficients, we obtain jumps for the solution and its normal fluxes across $\Sigma$, involving the solutions of local cell problems on the reference channel in every point of the interface $\Sigma$.

Keywords

  1. array of channels
  2. homogenization
  3. two-scale convergence
  4. reaction-diffusion equation
  5. effective transmission conditions
  6. nonlinear boundary conditions

MSC codes

  1. 35K57
  2. 35B27
  3. 35Q92

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Y. Amirat, O. Bodart, G. A. Chechkin, and A. L. Piatnitski, Asymptotics of a spectral-sieve problem, J. Math. Anal. Appl., 435 (2016), pp. 1652--1671.
2.
J.-M. E. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math. Ser. B, 32 (2011), pp. 823--846.
3.
A. Bhattacharya, M. Gahn, and M. Neuss-Radu, Effective transmission conditions for reaction-diffusion processes in domains separated by thin channels, Appl. Anal., 2020, in press.
4.
A. Bourgeat, S. Luckhaus, and A. Mikelić, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math. Anal., 27 (1996), pp. 1520--1543.
5.
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2010.
6.
D. Cioranescu, A. Damlamian, and G. Griso, Periodic unfolding and homogenization, C. R. Math. Acad. Sci. Paris, 335 (2002), pp. 99--104.
7.
D. Cioranescu, A. Damlamian, G. Griso, and D. Onofrei, The periodic unfolding method for perforated domains and Neumann sieve models, J. Math. Pures Appl., 89 (2008), pp. 248--277.
8.
C. Conca, Étude d'un fluid traversant une paroi perforeé I. Comportement limite près de la paroi, J. Math. Pures Appl., 66 (1987), pp. 1--43.
9.
C. Conca, Étude d'un fluid traversant une paroi perforeé II. Comportement limite loin de la paroi, J. Math. Pures Appl., 66 (1987), pp. 45--69.
10.
T. Del Vecchio, The thick Neumann's sieve, Ann. Math. Pura Appl., 147 (1987), pp. 363--402.
11.
G. Friesecke, R. D. James, and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), pp. 1461--1506.
12.
R. R. Gadyl'shin, A. L. Piatnitskii, and G. A. Chechkin, On the asymptotic behaviour of eigenvalues of a boundary-value problem in a planar domain of Steklov sieve type, Izv. Math., 82(2018), 1108.
13.
M. Gahn, Homogenisierung von Reaktions-Diffusionsgleichungen in Gebieten, die durch ein Netzwerk von Kanälen getrennt sind, Diploma Thesis (Supervisor: W. Jäger, M. Neuss-Radu), University of Heidelberg, 2012.
14.
M. Gahn, Derivation of Effective Models for Reaction-Diffusion Processes in Multi-Component Media, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2017.
15.
M. Gahn and M. Neuss-Radu, A characterization of relatively compact sets in $L^p(\Omega,B)$, Stud. Univ. Babeş-Bolyai Math., 61 (2016), pp. 279--290.
16.
M. Gahn, M. Neuss-Radu, and P. Knabner, Derivation of effective transmission conditions for domains separated by a membrane for different scaling of membrane diffusivity, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), pp. 773--797.
17.
M. Gahn, M. Neuss-Radu, and P. Knabner, Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface, Netw. Heterog. Media, 13 (2018), pp. 609--640.
18.
D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber, Reconstituting organ-level lung functions on a chip, Science, 328 (2010), pp. 1662--1668.
19.
J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
20.
S. Marušić and E. Marušić-Paloka, Two-scale convergence for thin domains and its applications to some lower-dimensional model in fluid mechanics, Asymptot. Anal., 23 (2000), pp. 23--58.
21.
A. Matzavinos and M. Ptashnyk, Homogenization of oxygen transport in biological tissues, Appl. Anal., 95 (2016), pp. 1013--1049.
22.
M. Neuss-Radu and W. Jäger, Homogenization of thin porous layers and applications to ion transport through channels of biological membranes, Oberwolfach Rep., 49 (2005), pp. 2809--2812.
23.
M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), pp. 687--720.
24.
D. Onofrei, The unfolding operator near a hyperplane and its applications to the Neumann sieve model, Adv. Math. Sci. Appl., 16 (2006), pp. 239--258.
25.
E. Sanchez-Palencia, Boundary value problems in domains containing perforated walls, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar III, Res. Notes Math. 70, Pittman, London, 1982, pp. 309--325.
26.
T. A. Shaposhnikova, Homogenization of the Neumann problem in a domain a part of which is a set of channels, Differ. Equ., 37 (2001), pp. 1315--1323.
27.
V. V. Yablokov, The problem on homogenization of solutions of second order elliptic equations in the domain whose part is a union of thin cylinders, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 2 (2004), pp. 15--21.
28.
E. Zeidler, Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators, Springer, Cham, 1990.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 1573 - 1600
ISSN (online): 1540-3467

History

Submitted: 11 January 2021
Accepted: 28 June 2021
Published online: 1 November 2021

Keywords

  1. array of channels
  2. homogenization
  3. two-scale convergence
  4. reaction-diffusion equation
  5. effective transmission conditions
  6. nonlinear boundary conditions

MSC codes

  1. 35K57
  2. 35B27
  3. 35Q92

Authors

Affiliations

Funding Information

Klaus Tschira Stiftung https://doi.org/10.13039/501100007316 : 00.0277.2015

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.