Abstract

We address the problem of computing the smallest symplectic eigenvalues and the corresponding eigenvectors of symmetric positive-definite matrices in the sense of Williamson's theorem. It is formulated as minimizing a trace cost function over the symplectic Stiefel manifold. We first investigate various theoretical aspects of this optimization problem such as characterizing the sets of critical points, saddle points, and global minimizers as well as proving that nonglobal local minimizers do not exist. Based on our recent results on constructing Riemannian structures on the symplectic Stiefel manifold and the associated optimization algorithms, we then propose a numerical procedure for computing symplectic eigenpairs in the framework of Riemannian optimization. Moreover, a connection of the sought solution with the eigenvalues of a special class of Hamiltonian matrices is discussed. Numerical examples are presented.

Keywords

  1. symplectic eigenpairs
  2. Williamson's diagonal form
  3. trace minimization
  4. Riemannian optimization
  5. symplectic Stiefel manifold
  6. symmetric positive-definite matrices
  7. positive-definite Hamiltonian matrix

MSC codes

  1. 15A15
  2. 15A18
  3. 70G45

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P.-A. Absil, C. Baker, and K. Gallivan, A truncated-CG style method for symmetric generalized eigenvalue problems, J. Comput. Appl. Math., 189 (2006), pp. 274--285, https://doi.org/10.1016/j.cam.2005.10.006.
2.
P.-A. Absil, C. Baker, K. Gallivan, and A. Sameh, Adaptive model trust region methods for generalized eigenvalue problems, in Proceedings of ICCS, Springer, Berlin, 2005, pp. 33--41, https://doi.org/10.1007/11428831_5.
3.
P.-A. Absil, R. Mahony, and R. Sepulchre, Riemannian geometry of Grassmann manifolds with a view on algorithmic computations, Acta Appl. Math, 8 (2004), pp. 199--220, https://doi.org/10.1023/B:ACAP.0000013855.14971.91.
4.
P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.
5.
P. Amodio, A symplectic Lanczos-type algorithm to compute the eigenvalues of positive definite Hamiltonian matrices, in Proceedings of ICCS, P. Sloot, D. Abramson, A. Bogdanov, J. Dongarra, A. Zomaya, and Y. Gorbachev, eds., Lecture Notes in Comput. Sci. 2657 (Part II), Springer, 2003, pp. 139--148, https://doi.org/10.1007/3-540-44862-4_16.
6.
P. Amodio, On the computation of few eigenvalues of positive definite Hamiltonian matrices, Future Generation Comput. Syst., 22 (2006), pp. 403--411, https://doi.org/10.1016/j.future.2004.11.027.
7.
P. Amodio, F. Iavernaro, and D. Trigiante, Conservative perturbations of positive definite Hamiltonian matrices, Numer. Linear Algebra Appl, 12 (2005), pp. 117--125, https://doi.org/10.1002/nla.409.
8.
Z. Bai and R.-C. Li, Minimization principles for the linear response eigenvalue problem I: Theory, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 1075--1100, https://doi.org/10.1137/110838960.
9.
Z. Bai and R.-C. Li, Minimization principles for the linear response eigenvalue problem II: Computation, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 392--416, https://doi.org/10.1137/110838972.
10.
Z. Bai and R.-C. Li, Minimization principles and computation for the generalized linear response eigenvalue problem, BIT, 54 (2014), pp. 31--54, https://doi.org/10.1007/s10543-014-0472-6.
11.
C. Baker, P.-A. Absil, and K. Gallivan, An implicit Riemannian trust-region method for the symmetric generalized eigenproblem, in Proceedings of ICCS, Springer, Berlin, 2006, pp. 210--217, https://doi.org/10.1007/11758501_32.
12.
P. Benner and H. Fassbender, An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem, Linear Algebra Appl., 263 (1997), pp. 75--111, https://doi.org/10.1016/S0024-3795(96)00524-1.
13.
P. Benner, H. Fassbender, and M. Stoll, Solving large-scale quadratic eigenvalue problems with Hamiltonian eigenstructure using a structure-preserving Krylov subspace method, Electron. Trans. Numer. Anal., 29 (2008), pp. 212--229.
14.
P. Benner, H. Faßbender, and M. Stoll, A Hamiltonian Krylov--Schur-type method based on the symplectic Lanczos process, Linear Algebra Appl., 435 (2011), pp. 578--600, https://doi.org/10.1016/j.laa.2010.04.048.
15.
P. Benner, D. Kressner, and V. Mehrmann, Skew-Hamiltonian and Hamiltonian eigenvalue problems: Theory, algorithms and applications, in Proceedings of the Conference on Applied Mathematics and Scientific Computing, 2005, pp. 3--39, https://doi.org/10.1007/1-4020-3197-1_1.
16.
R. Bhatia and T. Jain, On the symplectic eigenvalues of positive definite matrices, J. Math. Phys., 56 (2015), 112201, https://doi.org/10.1063/1.4935852.
17.
P. Birtea, I. Caşu, and D. Comǎnescu, Optimization on the real symplectic group, Monatsh. Math., 191 (2020), pp. 465--485, https://doi.org/10.1007/s00605-020-01369-9.
18.
V. Bovdia, R. A. Horn, M. Salim, and V. Sergeichuk, Symplectic spaces and pairs of symmetric and nonsingular skew-symmetric matrices under congruence, Linear Algebra Appl., 537 (2018), pp. 84--99, https://doi.org/10.1016/j.laa.2017.09.026.
19.
M. de Gosson, Symplectic Geometry and Quantum Mechanics, Adv. Partial Differ. Equ. (Basel), Birkhäuser, Basel, 2006.
20.
A. Edelman, T. Arias, and S. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303--353, https://doi.org/10.1137/S0895479895290954.
21.
J. Eisert, T. Tyc, T. Rudolph, and B. Sanders, Gaussian quantum marginal problem, Commun. Math. Phys., 280 (2008), pp. 263--280, https://doi.org/10.1007/s00220-008-0442-4.
22.
H. Fassbender, The parameterized SR algorithm for symplectic (butterfly) matrices, Math. Comp., 70 (2000), pp. 1515--1541, https://doi.org/10.1090/S0025-5718-00-01265-5.
23.
H. Fassbender, Symplectic Methods for the Symplectic Eigenproblem, Springer, Berlin, 2002.
24.
J. Fehr, D. Grunert, P. Holzwarth, B. Fröhlich, N. Walker, and P. Eberhard, MOREMBS---A model order reduction package for elastic multibody systems and beyond, in Reduced-Order Modeling (ROM) for Simulation and Optimization, W. Keiper, A. Milde, and S. Volkwein, eds., Springer, Berlin, 2018, pp. 141--166, https://doi.org/10.1007/978-3-319-75319-5_7.
25.
S. Fiori, A Riemannian steepest descent approach over the inhomogeneous symplectic group: Application to the averaging of linear optical systems, Appl. Math. Comput., 283 (2016), pp. 251--264, https://doi.org/10.1016/j.amc.2016.02.018.
26.
A. Fomenko, Symplectic Geometry, Adv. Stud. Contemp. Math., Gordon and Breach Science Publishers, Amsterdam, 1995.
27.
B. Francis, A Course in $H_\infty$ Control Theory, Lecture Notes in Control and Inform. Sci., Springer, Berlin, 1987.
28.
B. Gao, N. Son, P.-A. Absil, and T. Stykel, Riemannian optimization on the symplectic Stiefel manifold, SIAM J. Optim., 31 (2021), pp. 1546--1575, https://doi.org/10.1137/20M1348522.
29.
G. Golub and C. V. Loan, Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, MD, 2013.
30.
M. Grüning, A. Marini, and X. Gonze, Implementation and testing of Lanczos-based algorithms for random-phase approximation eigenproblems, Comput. Mat. Sci., 50 (2011), pp. 2148--2156, https://doi.org/10.1016/j.commatsci.2011.02.021.
31.
N. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008, https://doi.org/10.1137/1.9780898717778.
32.
D. Hinrichsen and N. Son, Stability radii of linear discrete-time systems and symplectic pencils, Internat. J. Robust Nonlinear Control, 1 (1991), pp. 79--97, https://doi.org/10.1002/rnc.4590010204.
33.
T. Hiroshima, Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs, Phys. Rev. A, 73 (2006), 012330, https://doi.org/10.1103/PhysRevA.73.012330.
34.
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, Basel, 2011, https://doi.org/10.1007/978-3-0348-0104-1.
35.
R. Horn and C. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, New York, 2013.
36.
M. Idel, S. Gaona, and M. Wolf, Perturbation bounds for Williamson's symplectic normal form, Linear Algebra Appl., 525 (2017), pp. 45--58, https://doi.org/10.1016/j.laa.2017.03.013.
37.
K. D. Ikramov, The conditions for the reducibility and canonical forms of Hamiltonian matrices with pure imaginary eigenvalues, Zh. Vychisl. Mat. Mat. Fiz., 31 (1991), pp. 1123--1130.
38.
K. D. Ikramov, On the symplectic eigenvalues of positive definite matrices, Moscow Univ. Comput. Math. Cybernet., 42 (2018), pp. 1--4, https://doi.org/10.3103/S0278641918010041.
39.
T. Jain and H. Mishra, Derivatives of symplectic eigenvalues and a Lidskii type theorem, Canad. J. Math., 2020, https://doi.org/10.4153/S0008414X2000084X.
40.
J. Kovač-Striko and K. Veselić, Trace minimization and definiteness of symmetric pencils, Linear Algebra Appl., 216 (1995), pp. 139--158, https://doi.org/10.1016/0024-3795(93)00126-K.
41.
M. Krbek, T. Tyc, and J. Vlach, Inequalities for quantum marginal problems with continuous variables, J. Math. Phys., 55 (2014), 062201, https://doi.org/10.1063/1.4880198.
42.
D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems, Lect. Notes Comput. Sci. Eng., 46, Springer, Berlin, 2005, https://doi.org/10.1007/3-540-28502-4.
43.
D. Kressner, M. Pandur, and M. Shao, An indefinite variant of LOBPCG for definite matrix pencils, Numer. Algorithms, 66 (2014), pp. 681--703, https://doi.org/10.1007/s11075-013-9754-3.
44.
P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford University Press, Oxford, 1995.
45.
P. Lancaster and R. Rodman, Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence, Linear Algebra Appl., 406 (2005), pp. 1--76, https://doi.org/10.1016/j.laa.2005.03.035.
46.
P. Lancaster and R. Rodman, Canonical forms for Hermitian matrix pairs under strict equivalence and congruence, SIAM Rev., 47 (2006), pp. 407--443, https://doi.org/10.1137/S003614450444556X.
47.
J. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. Jordan, and B. Recht, First-order methods almost always avoid strict saddle points, Math. Program., 176 (2019), pp. 311--337, https://doi.org/110.1007/s10107-019-01374-3.
48.
R. C. Li and L. H. Zhang, Convergence of the block Lanczos method for eigenvalue clusters, Numer. Math., 131 (2015), pp. 83--113, https://doi.org/10.1007/s00211-014-0681-6.
49.
X. Liang, R.-C. Li, and Z. Bai, Trace minimization principles for positive semi-definite pencils, Linear Algebra Appl., 438 (2013), pp. 3085--3106, https://doi.org/10.1016/j.laa.2012.12.003.
50.
C. V. Loan, A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix, Linear Algebra Appl., 61 (1984), pp. 233--251, https://doi.org/10.1016/0024-3795(84)90034-X.
51.
R. B. Morgan and M. Zeng, A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity, Linear Algebra Appl., 415 (2006), pp. 96--113, https://doi.org/10.1016/j.laa.2005.07.024.
52.
I. Nakić and K. Veselić, Wielandt and Ky-Fan theorem for matrix pairs, Linear Algebra Appl., 369 (2003), pp. 77--93, https://doi.org/10.1016/S0024-3795(02)00733-4.
53.
J. Nocedal and S. Wright, Numerical Optimization, Springer Ser. Oper. Res. Financ. Eng., Springer, Berlin, 2006, https://doi.org/10.1007/978-0-387-40065-5.
54.
M. Pandur, Preconditioned gradient iterations for the eigenproblem of definite matrix pairs, Electron. Trans. Numer. Anal., 51 (2019), pp. 331--362, https://doi.org/10.1553/etna_vol51s331.
55.
K. Parthasarathy, The symmetry group of Gaussian states in $L^2(\mathbb{R}^n)$, in Prokhorov and Contemporary Probability Theory, Springer Proc. Math. Stat. 33, Springer, Berlin, 2013, pp. 349--369, https://doi.org/10.1007/978-3-642-33549-5_21.
56.
L. Peng and K. Mohseni, Symplectic model reduction of Hamiltonian systems, SIAM J. Sci. Comput., 38 (2016), pp. A1--A27, https://doi.org/10.1137/140978922.
57.
C. Penke, A. Marek, C. Vorwerk, C. Draxl, and P. Benner, High performance solution of skew-symmetric eigenvalue problems with applications in solving the Bethe-Salpeter eigenvalue problem, Parallel Comput., 96 (2020), 102639, https://doi.org/10.1016/j.parco.2020.102639.
58.
Y. Saad, Numerical Methods for Large Eigenvalue Problems, SIAM, Philadelphia, 2011, https://doi.org/10.1137/1.9781611970739.
59.
A. Sameh and Z. Tong, The trace minimization method for the symmetric generalized eigenvalue problem, J. Comput. Appl. Math., 123 (2000), pp. 155--175, https://doi.org/10.1016/S0377-0427(00)00391-5.
60.
A. Sameh and J. Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem, SIAM J. Numer. Anal., 19 (1982), pp. 1243--1259, https://doi.org/10.1137/0719089.
61.
R. Simon, S. Chaturvedi, and V. Srinivasan, Congruences and canonical forms for a positive matrix: Application to the Schweinler--Wigner extremum principle, J. Math. Phys., 40 (1999), pp. 3632--3642, https://doi.org/10.1063/1.532913.
62.
A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control, 1 (2014), pp. 173--378, https://doi.org/10.1561/2600000002.
63.
R. Ward and L. Gray, Eigensystem computation for skew-symmetric matrices and a class of symmetric matrices, ACM Trans. Math. Software, 4 (1978), pp. 278--285, https://doi.org/10.1145/355791.355798.
64.
D. Watkins, On Hamiltonian and symplectic Lanczos processes, Linear Algebra Appl., 385 (2004), pp. 23--45, https://doi.org/10.1016/j.laa.2002.11.001.
65.
D. Watkins, The Matrix Eigenvalue Problem, SIAM, Philadelphia, 2007, https://doi.org/10.1137/1.9780898717808.
66.
S. Wei and I. Kao, Vibration analysis of wire and frequency response in the modern wiresaw manufacturing process, J. Sound Vib., 231 (2000), pp. 1383--1395, https://doi.org/10.1006/jsvi.1999.2471.
67.
J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58 (1936), pp. 141--163, https://doi.org/10.2307/2371062.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 1732 - 1757
ISSN (online): 1095-7162

History

Submitted: 7 January 2021
Accepted: 15 September 2021
Published online: 21 December 2021

Keywords

  1. symplectic eigenpairs
  2. Williamson's diagonal form
  3. trace minimization
  4. Riemannian optimization
  5. symplectic Stiefel manifold
  6. symmetric positive-definite matrices
  7. positive-definite Hamiltonian matrix

MSC codes

  1. 15A15
  2. 15A18
  3. 70G45

Authors

Affiliations

Funding Information

Fonds De La Recherche Scientifique - FNRS https://doi.org/10.13039/501100002661 : 30468160
Vietnam Institute for Advanced Study in Mathematics https://doi.org/10.13039/501100007339

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media