Abstract

We study solution sensitivity for nonlinear programs (NLPs) whose structures are induced by graphs. These NLPs arise in many applications such as dynamic optimization, stochastic optimization, optimization with partial differential equations, and network optimization. We show that for a given pair of nodes, the sensitivity of the primal-dual solution at one node against a data perturbation at the other node decays exponentially with respect to the distance between these two nodes on the graph. In other words, the solution sensitivity decays as one moves away from the perturbation point. This result, which we call exponential decay of sensitivity, holds under the strong second-order sufficiency condition and the linear independence constraint qualification. We also present conditions under which the decay rate remains uniformly bounded; this allows us to characterize the sensitivity behavior of NLPs defined over subgraphs of infinite graphs. The theoretical developments are illustrated with numerical examples.

Keywords

  1. sensitivity
  2. nonlinear programming
  3. graphs

MSC codes

  1. 49Q12
  2. 90C30
  3. 90C35

Get full access to this article

View all available purchase options and get full access to this article.

References

2.
S. Babaeinejadsarookolaee, A. Birchfield, R. D. Christie, C. Coffrin, C. DeMarco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang, et al., The Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms, arXiv preprint, arXiV:1908.02288 [math. OC], 2019, https://arxiv.org/abs/1908.02788.
3.
D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas, Princeton University Press, 2009.
4.
J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, SIAM, Philadesphia, 2010.
5.
L. T. Biegler, Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes, SIAM, Philadesphia, 2010.
6.
L. T. Biegler, A survey on sensitivity-based nonlinear model predictive control, IFAC Proc. Vol., 46 (2013), pp. 499--510.
7.
L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders, Large-scale PDE-constrained optimization: An introduction, in Large-Scale PDE-Constrained Optimization, Springer, Cham, 2003, pp. 3--13.
8.
A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye, Grid structural characteristics as validation criteria for synthetic networks, IEEE Trans. Power, 32 (2016), pp. 3258--3265.
9.
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Science & Business Media, New York, 2013.
10.
J. Cochran, M. Miller, O. Zinaman, M. Milligan, D. Arent, B. Palmintier, M. O'Malley, S. Mueller, E. Lannoye, A. Tuohy, et al., Flexibility in 21st Century Power Systems, tech. report, National Renewable Energy Lab. (NREL), Golden, CO, 2014.
11.
C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, PowerModels. JL: An open-source framework for exploring power flow formulations, in Proceedings of the Power Systems Computation Conference (PSCC), IEEE, 2018, pp. 1--8.
12.
R. S. Dembo, J. M. Mulvey, and S. A. Zenios, OR practice-large-scale nonlinear network models and their application, Oper. Res., 37 (1989), pp. 353--372.
13.
S. Demko, W. F. Moss, and P. W. Smith, Decay rates for inverses of band matrices, Math. comp., 43 (1984), pp. 491--499.
14.
M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer, Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations, J. Process Control, 12 (2002), pp. 577--585.
15.
A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer, Cham, 2009.
16.
A. V. Fiacco, Sensitivity analysis for nonlinear programming using penalty methods, Math. Program., 10 (1976), pp. 287--311.
17.
G. H. Golub and C. F. Van Loan, Matrix Computations, Sohns Hopkins University, Press, Baltimore, MD, 2012.
18.
I. E. Grossmann and M. Morari, Operability, Resiliency, and Flexibility: Process Design Objectives for a Changing World, tech. report DRC-06-55-83, Chemical Engineering Department, University of Wisconsin, Madison, 1983.
19.
L. Grüne, M. Schaller, and A. Schiela, Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control, SIAM J. Control Optim., 57 (2019), pp. 2753--2774.
20.
L. Grüne, M. Schaller, and A. Schiela, Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic PDEs, ESAIM Control Option. Calc. Vol., 27 (2021), 56.
21.
L. Grüne, M. Schaller, and A. Schiela, Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations, J. Differential Equations, 268 (2020), pp. 7311--7341.
22.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 2012.
23.
J. Jalving, Y. Cao, and V. M. Zavala, Graph-based modeling and simulation of complex systems, Comput. Chem. Engrg, 125 (2019), pp. 134--154.
24.
M. Kojima, Strongly stable stationary solutions in nonlinear programs, in Analysis and Computation of Fixed Points, Amsterdam, Elsevier, 1980, pp. 93--138.
25.
S. Na and M. Anitescu, Exponential decay in the sensitivity analysis of nonlinear dynamic programming, SIAM J. Optim., 30 (2020), pp. 1527--1554.
26.
S. Na and M. Anitescu, Superconvergence of Online Optimization for Model Predictive Control, arXiv preprint, arXiv:2001.03707 [Math. OC], 2020, https://arxiv.org/abs/2001.03707.
27.
S. Na, S. Shin, M. Anitescu, and V. M. Zavala, On the Convergence of Overlapping Schwarz Decomposition for Nonlinear Optimal Control, 2022, https://arxiv.org/abs/2005.06674.
28.
J. Nocedal and S. Wright, Numerical Optimization, Springer Science & Business Media, New York, 2006.
29.
H. Nosair and F. Bouffard, Flexibility envelopes for power system operational planning, IEEE Trans. Sustain. Energy, 6 (2015), pp. 800--809.
30.
M. V. Pereira and L. M. Pinto, Multi-stage stochastic optimization applied to energy planning, Math. program., 52 (1991), pp. 359--375.
31.
S. M. Robinson, Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-programming algorithms, Math. program., 7 (1974), pp. 1--16.
32.
S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43--62.
33.
A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, SIAM, Philadephia, 2014.
34.
S. Shin, M. Anitescu, and V. M. Zavala, Overlapping Schwarz decomposition for constrained quadratic programs, in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 3004--3009, https://ieeexplore.ieee.org/document/9304139.
35.
S. Shin, T. Faulwasser, M. Zanon, and V. M. Zavala, A parallel decomposition scheme for solving long-horizon optimal control problems, in Proceeding of the IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 5264--5271.
36.
S. Shin and V. M. Zavala, Diffusing-horizon model predictive control, IEEE Trans. Automat. Control, in Press.
37.
S. Shin, V. M. Zavala, and M. Anitescu, Decentralized schemes with overlap for solving graph-structured optimization problems, IEEE Trans. Control Netw. Syst. 7 (2020), pp. 1225--1236.
38.
R. E. Swaney and I. E. Grossmann, An index for operational flexibility in chemical process design. Part I: Formulation and theory, AIChE J., 31 (1985), pp. 621--630.
39.
W. Xu and M. Anitescu, Exponentially accurate temporal decomposition for long-horizon linear-quadratic dynamic optimization, SIAM J. Optim., 28 (2018), pp. 2541--2573.
40.
V. M. Zavala, Stability analysis of an approximate scheme for moving horizon estimation, Comput. Chem. Engrg., 34 (2010), pp. 1662--1670.
41.
A. Zlotnik, M. Chertkov, and S. Backhaus, Optimal control of transient flow in natural gas networks, in Proceedings fot he 54th IEEE Conference on Decision and Control (CDC), IEEE, 2015, pp. 4563--4570.

Information & Authors

Information

Published In

cover image SIAM Journal on Optimization
SIAM Journal on Optimization
Pages: 1156 - 1183
ISSN (online): 1095-7189

History

Submitted: 11 January 2021
Accepted: 12 December 2021
Published online: 31 May 2022

Keywords

  1. sensitivity
  2. nonlinear programming
  3. graphs

MSC codes

  1. 49Q12
  2. 90C30
  3. 90C35

Authors

Affiliations

Funding Information

Grainger Foundation https://doi.org/10.13039/100008074

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : CNS-1545046

Funding Information

U.S. Department of Energy https://doi.org/10.13039/100000015 : DE-AC02-06CH11347

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media