Computational Methods in Science and Engineering

An Efficient Dynamical Low-Rank Algorithm for the Boltzmann-BGK Equation Close to the Compressible Viscous Flow Regime

Abstract

It has recently been demonstrated that dynamical low-rank algorithms can provide robust and efficient approximations to a range of kinetic equations. This is true especially if the solution is close to some asymptotic limit where it is known that the solution is low-rank. A particularly interesting case is the fluid dynamic limit that is commonly obtained in the limit of small Knudsen number. However, in this case the Maxwellian which describes the corresponding equilibrium distribution is not necessarily low-rank; because of this, the methods known in the literature are only applicable to the weakly compressible case. In this paper, we propose an efficient dynamical low-rank integrator that can capture the fluid limit---the Navier--Stokes equations---of the Boltzmann-Bhatnagar--Gross--Krook (Boltzmann-BGK) model even in the compressible regime. This is accomplished by writing the solution as $f=Mg$, where $M$ is the Maxwellian and the low-rank approximation is only applied to $g$. To efficiently implement this decomposition within a low-rank framework requires, in the isothermal case, that certain coefficients are evaluated using convolutions, for which fast algorithms are known. Using the proposed decomposition also has the advantage that the rank required to obtain accurate results is significantly reduced compared to the previous state of the art. We demonstrate this by performing a number of numerical experiments and also show that our method is able to capture sharp gradients/shock waves.

Keywords

  1. dynamical low-rank integrator
  2. Boltzmann-BGK mode
  3. compressible Navier--Stokes equations
  4. Chapman--Enskog expansion
  5. convolution
  6. Fourier spectral methods

MSC codes

  1. 35Q20
  2. 35Q30
  3. 65L04
  4. 65M99

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P. Andries, P. Le Tallec, J.-P. Perlat, and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B Fluids, 19 (2000), pp. 813--830.
2.
A. Arnold and T. Jahnke, On the approximation of high-dimensional differential equations in the hierarchical Tucker format, BIT, 54 (2014), pp. 305--341.
3.
C. Bardos, F. Golse, and D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., 63 (1991), pp. 323--344.
4.
J.B. Bell, P. Colella, and H.M Glaz, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85 (1989), pp. 257--283.
5.
P. Bhatnagar, E. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. (2), 94 (1954), pp. 511--525.
6.
C. Cercignani, The Boltzmann Equation and Its Applications, Springer, New York, 1988.
7.
D. Conte and C. Lubich, An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics, ESAIM Math. Model. Numer. Anal., 44 (2010), pp. 759--780.
8.
N. Crouseilles, P. Degond, and M. Lemou, A hybrid kinetic--fluid model for solving the Vlasov--BGK equation, J. Comput. Phys., 203 (2005), pp. 572--601.
9.
G. Dimarco and L. Pareschi, Numerical methods for kinetic equations, Acta Numer., 23 (2014), pp. 369--520.
10.
Z. Ding, L. Einkemmer, and Q. Li, dynamical low-rank integrator for the linear Boltzmann equation: error analysis in the diffusion limit, SIAM J. Numer. Anal., 59 (2021), pp. 2254--2285.
11.
L. Einkemmer, A low-rank algorithm for weakly compressible flow, SIAM J. Sci. Comput., 41 (2019), pp. A2795--A2814.
12.
L. Einkemmer, J. Hu, and Y. Wang, An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation, J. Comput. Phys., 439 (2021), 110353.
13.
L. Einkemmer and C. Lubich, A low-rank projector-splitting integrator for the Vlasov--Poisson equation, SIAM J. Sci. Comput., 40 (2018), pp. B1330--B1360.
14.
L. Einkemmer and C. Lubich, A quasi-conservative dynamical low-rank algorithm for the Vlasov equation, SIAM J. Sci. Comput., 41 (2019), pp. B1061--B1081.
15.
L. Einkemmer, A. Ostermann, and C. Piazzola, A low-rank projector-splitting integrator for the Vlasov--Maxwell equations with divergence correction, J. Comput. Phys., 403 (2020), 109063.
16.
L. Einkemmer and M. Wiesenberger, A conservative discontinuous Galerkin scheme for the 2D incompressible Navier--Stokes equations, Comput. Phys. Commun., 185 (2014), pp. 2865--2873.
17.
F. Filbet and T. Rey, A hierarchy of hybrid numerical methods for multiscale kinetic equations, SIAM J. Sci. Comput., 37 (2015), pp. A1218--A1247.
18.
J. Hu, S. Jin, and Q. Li, Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations, in R. Abgrall and C.-W. Shu, eds., Handbook of Numerical Methods for Hyperbolic Problems: Applied and Modern Issues, Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations, North-Holland, Amsterdam, 2017, pp. 103--129.
19.
G.-S. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 19 (1998), pp. 1892--1917.
20.
E. Kieri, C. Lubich, and H. Walach, Discretized dynamical low-rank approximation in the presence of small singular values, SIAM J. Numer. Anal., 54 (2016), pp. 1020--1038.
21.
O. Koch and C. Lubich, Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 434--454.
22.
O. Koch and C. Lubich, Dynamical tensor approximation, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2360--2375.
23.
K. Kormann, A semi-Lagrangian Vlasov solver in tensor train format, SIAM J. Sci. Comput., 37 (2015), pp. B613--B632.
24.
K. Kormann and E. Sonnendrücker, Sparse grids for the Vlasov--Poisson equation, in Sparse Grids and Applications, Springer, Cham, Switzerland 2016, pp. 163--190.
25.
R.J. LeVeque, Numerical Methods for Conservation Laws, Springer, Basel, 1992.
26.
J. Liu and C. Shu, A high-order discontinuous Galerkin method for 2D incompressible flows, J. Comput. Phys., 160 (2000), pp. 577--596.
27.
C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, European Mathematical Society, Zürich, 2008.
28.
C. Lubich, Time integration in the multiconfiguration time-dependent Hartree method of molecular quantum dynamics, AMRX, 2015 (2015), pp. 311--328.
29.
C. Lubich and I.V. Oseledets, A projector-splitting integrator for dynamical low-rank approximation, BIT, 54 (2014), pp. 171--188.
30.
C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken, Dynamical approximation by hierarchical Tucker and tensor-train tensors, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 470--494.
31.
R.W. MacCormack, The effect of viscosity in hypervelocity impact cratering, J. Spacecr. Rockets, 40 (2003), pp. 757--763.
32.
H.-D. Meyer, F. Gatti, and G.A. Worth, Multidimensional Quantum Dynamics, Wiley, Weinheim, Germany, 2009.
33.
H.-D. Meyer, U. Manthe, and L.S. Cederbaum, The multi-configurational time-dependent Hartree approach, Chem. Phys. Letters, 165 (1990), pp. 73--78.
34.
H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), pp. 408--463.
35.
Z. Peng, R. McClarren, and M. Frank, A low-rank method for two-dimensional time-dependent radiation transport calculations, J. Comput. Phys., 421 (2020), 109735.
36.
E. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dyn., 3 (1968), pp. 95--96.
37.
H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Springer, Berlin, 2005.
38.
J. Vencels, G.L. Delzanno, A. Johnson, I.B. Peng, E. Laure, and S. Markidis, Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments, Procedia Comput. Sci., 51 (2015), pp. 1148--1157.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B1057 - B1080
ISSN (online): 1095-7197

History

Submitted: 19 January 2021
Accepted: 27 May 2021
Published online: 21 September 2021

Keywords

  1. dynamical low-rank integrator
  2. Boltzmann-BGK mode
  3. compressible Navier--Stokes equations
  4. Chapman--Enskog expansion
  5. convolution
  6. Fourier spectral methods

MSC codes

  1. 35Q20
  2. 35Q30
  3. 65L04
  4. 65M99

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-1654152, CBET-1854829
National Science Foundation https://doi.org/10.13039/100000001 : DMS-1818449

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media