Methods and Algorithms for Scientific Computing

Conservative and Accurate Solution Transfer Between High-Order and Low-Order Refined Finite Element Spaces

Abstract

In this paper we introduce general transfer operators between high-order and low-order refined finite element spaces that can be used to couple high-order and low-order simulations. Under natural restrictions on the low-order refined space we prove that both the high-to-low-order and low-to-high-order linear mappings are conservative, constant preserving, and high-order accurate. While the proof holds for affine geometries, numerical experiments indicate that the results hold for more general curved meshes. We present several numerical results confirming our analysis and demonstrate the utility of the new mappings in the context of adaptive mesh refinement and conservative multidiscretization coupling.

Keywords

  1. high-order finite elements
  2. solution transfer
  3. low-order refined

MSC codes

  1. 65M60
  2. 65N50

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, J. Dahm, D. Medina, and S. Zampini, MFEM: A modular finite element methods library, Comput. Math. Appl., 81 (2021), pp. 42--74, https://doi.org/10.1016/j.camwa.2020.06.009.
2.
R. Anderson, V. Dobrev, T. Kolev, and R. Rieben, Monotonicity in high-order curvilinear finite element arbitrary Lagrangian-Eulerian remap, Internat. J. Numer. Methods Fluids, 77 (2014), pp. 249--273, https://doi.org/10.1002/fld.3965.
3.
R. W. Anderson, V. A. Dobrev, T. V. Kolev, R. N. Rieben, and V. Z. Tomov, High-order multi-material ALE hydrodynamics, SIAM J. Sci. Comput., 40 (2018), pp. B32--B58.
4.
P. D. Bello-Maldonado and P. F. Fischer, Scalable low-order finite element preconditioners for high-order spectral element Poisson solvers, SIAM J. Sci. Comput., 41 (2019), pp. S2--S18, https://doi.org/10.1137/18M1194997.
5.
C. Bernardi and Y. Maday, Polynomial interpolation results in Sobolev spaces, J. Comput. Appl. Math., 43 (1992), pp. 53--80, https://doi.org/10.1016/0377-0427(92)90259-z.
6.
C. Canuto, Stabilization of spectral methods by finite element bubble functions, Comput. Methods Appl. Mech. Engrg., 116 (1994), pp. 13--26, https://doi.org/10.1016/s0045-7825(94)80004-9.
7.
C. Canuto, P. Gervasio, and A. Quarteroni, Finite-element preconditioning of G-NI spectral methods, SIAM J. Sci. Comput., 31 (2010), pp. 4422--4451, https://doi.org/10.1137/090746367.
8.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, Berlin, 2006, https://doi.org/10.1007/978-3-540-30726-6.
9.
M. A. Casarin, Quasi-optimal Schwarz methods for the conforming spectral element discretization, SIAM J. Numer. Anal., 34 (1997), pp. 2482--2502, https://doi.org/10.1137/s0036142995292281.
10.
J. Červený, V. Dobrev, and T. Kolev, Nonconforming mesh refinement for high-order finite elements, SIAM J. Sci. Comput., 41 (2019), pp. C367--C392, https://doi.org/10.1137/18m1193992.
11.
T. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
12.
K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal, $p$-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J. Comput. Phys., 207 (2005), pp. 92--113, https://doi.org/10.1016/j.jcp.2005.01.005.
13.
P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev, J.-S. Camier, M. Kronbichler, T. Warburton, K. Swirydowicz, and J. Brown, Scalability of high-performance PDE solvers, Int. J. High Performance Comput. Appl., 34 (2020), pp. 562--586, https://doi.org/10.1177/1094342020915762.
14.
M. Franco, J.-S. Camier, J. Andrej, and W. Pazner, High-order matrix-free incompressible flow solvers with GPU acceleration and low-order refined preconditioners, Comput. Fluids, (2020), 104541, https://doi.org/10.1016/j.compfluid.2020.104541.
15.
B. Helenbrook, D. Mavriplis, and H. Atkins, Analysis of $p$-multigrid for continuous and discontinuous finite element discretizations, in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, 2003, https://doi.org/10.2514/6.2003-3989.
16.
B. T. Helenbrook and H. L. Atkins, Application of $p$-multigrid to discontinuous Galerkin formulations of the Poisson equation, AIAA J., 44 (2006), pp. 566--575, https://doi.org/10.2514/1.15497.
17.
M. Hutchinson, A. Heinecke, H. Pabst, G. Henry, M. Parsani, and D. Keyes, Efficiency of high order spectral element methods on petascale architectures, in High Performance Computing, Springer, Cham, 2016, pp. 449--466, https://doi.org/10.1007/978-3-319-41321-1_23.
18.
D. A. Kopriva, Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26 (2006), pp. 301--327, https://doi.org/10.1007/s10915-005-9070-8.
19.
M. Kronbichler and K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, ACM Trans. Math. Software, 45 (2019), pp. 1--40, https://doi.org/10.1145/3325864.
20.
M. Kronbichler and K. Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM Trans. Parallel Comput., 6 (2019), pp. 1--32, https://doi.org/10.1145/3322813.
21.
M. Kronbichler and P.-O. Persson, eds., Efficient High-Order Discretizations for Computational Fluid Dynamics, Springer, Cham, 2021, https://doi.org/10.1007/978-3-030-60610-7.
22.
V. I. Krylov, Approximate Calculation of Integrals, Macmillan, New York, 1962.
23.
K. Ljungkvist, Matrix-free finite-element computations on graphics processors with adaptively refined unstructured meshes, in Proceedings of the 25th High Performance Computing Symposium, HPC '17, San Diego, CA, 2017.
24.
G. Mastroianni and M. Russo, Some new results on Lagrange interpolation for bounded variation functions, J. Approx. Theory, 162 (2010), pp. 1417--1428, https://doi.org/10.1016/j.jat.2010.03.002.
25.
J. Melenk, On condition numbers in $hp$-FEM with Gauss--Lobatto-based shape functions, J. Comput. Appl. Math., 139 (2002), pp. 21--48, https://doi.org/10.1016/S0377-0427(01)00391-0.
26.
J. Melenk, K. Gerdes, and C. Schwab, Fully discrete $hp$-finite elements: Fast quadrature, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 4339--4364, https://doi.org/10.1016/s0045-7825(00)00322-4.
27.
MFEM: Modular Finite Element Methods, Software, 2020, https://mfem.org, https://doi.org/10.11578/dc.20171025.1248.
28.
M. Min, J.-S. Camier, P. Fischer, A. Karakus, S. Kerkemeier, T. Kolev, Y. Lan, D. Medina, E. Merzari, A. Obabko, T. Ratnayaka, S. Dillon, A. Tomboulides, V. Tomov, and T. Warburton, Engage Second Wave ECP/CEED Applications, Tech. Report CEED-MS23, Exascale Computing Project, Dec. 2019, https://doi.org/10.5281/zenodo.2542359.
29.
S. A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys., 37 (1980), pp. 70--92, https://doi.org/10.1016/0021-9991(80)90005-4.
30.
W. Pazner, Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods, SIAM J. Sci. Comput., 42 (2020), pp. A3055--A3083, https://doi.org/10.1137/19m1282052.
31.
W. Pazner, Sparse invariant domain preserving discontinuous Galerkin methods with subcell convex limiting, Comput. Methods Appl. Mech. Engrg., 382 (2021), 113876, https://doi.org/10.1016/j.cma.2021.113876.
32.
W. Pazner and P.-O. Persson, Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods, J. Comput. Phys., 354 (2018), pp. 344--369, https://doi.org/10.1016/j.jcp.2017.10.030.
33.
P.-O. Persson and B. Stamm, A discontinuous Galerkin method for shock capturing using a mixed high-order and sub-grid low-order approximation space, J. Comput. Phys., in press.
34.
R. J. Procassini, K. K. Chand, C. J. Clouse, R. M. Ferencz, J. M. Grandy, W. D. Henshaw, K. J. Kramer, and I. D. Parsons, Osiris: A Modern, High-Performance, Coupled, Multi-Physics Code for Nuclear Reactor Core Analysis, Tech. Report UCRL-PROC-228793, Lawrence Livermore National Laboratory, 2007, https://www.osti.gov/biblio/909174.
35.
R. Rieben and K. Weiss, The Multiphysics on Advanced Platforms Project, Tech. Report LLNL-TR-815869, Lawrence Livermore National Laboratory, 2020, https://doi.org/10.2172/1724326.
36.
A. M. Rueda-Ramírez, S. Hennemann, F. J. Hindenlang, A. R. Winters, and G. Gassner, An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part II: Subcell finite volume shock capturing, J. Comput. Phys., 444 (2021), 110580.
37.
H. Sundar, G. Stadler, and G. Biros, Comparison of multigrid algorithms for high-order continuous finite element discretizations, Numer. Linear Algebra Appl., 22 (2015), pp. 664--680, https://doi.org/10.1002/nla.1979.
38.
B. Sündermann, Lebesgue Constants in Lagrangian Interpolation at the Fekete Points, Ergebnisbericht der Lehrstuhle Math III und VIII (Angewandte Mathematik) 44, Dortmund University, Dortmund, Germany, 1980.
39.
G. Szegö, Orthogonal Polynomials, American Mathematical Society, 1939.
40.
S. A. Teukolsky, Short note on the mass matrix for Gauss--Lobatto grid points, J. Comput. Phys., 283 (2015), pp. 408--413, https://doi.org/10.1016/j.jcp.2014.12.012.
41.
P. Thomas and C. Lombard, Geometric conservation law and its application to flow computations on moving grids, AIAA J., 17 (1979), pp. 1030--1037, https://doi.org/10.2514/3.61273.
42.
L. N. Trefethen, Is Gauss quadrature better than Clenshaw--Curtis?, SIAM Rev., 50 (2008), pp. 67--87, https://doi.org/10.1137/060659831.
43.
F. Vilar, A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction, J. Comput. Phys., 387 (2019), pp. 245--279, https://doi.org/10.1016/j.jcp.2018.10.050.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1 - A27
ISSN (online): 1095-7197

History

Submitted: 9 March 2021
Accepted: 1 September 2021
Published online: 5 January 2022

Keywords

  1. high-order finite elements
  2. solution transfer
  3. low-order refined

MSC codes

  1. 65M60
  2. 65N50

Authors

Affiliations

Funding Information

Lawrence Livermore National Laboratory https://doi.org/10.13039/100006227 : DE-AC52-07NA27344

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media