Abstract

Stochastically evolving geometric systems are studied in shape analysis and computational anatomy for modeling random evolutions of human organ shapes. The notion of geodesic paths between shapes is central to shape analysis and has a natural generalization as diffusion bridges in a stochastic setting. Simulation of such bridges is key to solving inference and registration problems in shape analysis. We demonstrate how to apply state-of-the-art diffusion bridge simulation methods to recently introduced stochastic shape deformation models, thereby substantially expanding the applicability of such models. We exemplify these methods by estimating template shapes from observed shape configurations while simultaneously learning model parameters.

Keywords

  1. shape analysis
  2. bridge simulation
  3. conditional diffusion
  4. hypoelliptic diffusion
  5. landmark dynamics
  6. guided proposals
  7. shape matching

MSC codes

  1. 60J60
  2. 65C05
  3. 62F15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Arnaudon, D. D. Holm, A. Pai, and S. Sommer, A stochastic large deformation model for computational anatomy, in Information Processing in Medical Imaging, Lecture Notes in Comput. Sci., Springer, 2017, pp. 571--582, https://doi.org/10.1007/978-3-319-59050-9_45.
2.
A. Arnaudon, D. D. Holm, and S. Sommer, A geometric framework for stochastic shape analysis, Found. Comput. Math., 19 (2019), pp. 653--701, https://doi.org/10.1007/s10208-018-9394-z.
3.
A. Barp, F.-X. Briol, A. D. Kennedy, and M. Girolami, Geometry and dynamics for Markov chain Monte Carlo, Annu. Rev. Statist. Appl., 5 (2018), pp. 451--471.
4.
A. Barp, A. Kennedy, and M. Girolami, Hamiltonian Monte Carlo on Symmetric and Homogeneous Spaces via Symplectic Reduction, preprint, https://arxiv.org/abs/1903.02699, 2019.
5.
F. Baudoin, Conditioned stochastic differential equations: Theory, examples and application to finance, Stochastic Process. Appl., 100 (2002), pp. 109--145, https://doi.org/DOI:10.1016/S0304-4149(02)00109-6.
6.
M. Bauer, M. Bruveris, and P. W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vis., 50 (2014), pp. 60--97.
7.
A. Beskos, O. Papaspiliopoulos, G. O. Roberts, and P. Fearnhead, Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), pp. 333--382, https://doi.org/10.1111/j.1467-9868.2006.00552.x.
8.
J. Bierkens, F. van der Meulen, and M. Schauer, Simulation of partial bridges for hypo-elliptic diffusions, Adv. Appl. Probab., 52 (2020), pp. 173--212.
9.
M. Bladt, S. Finch, and M. Sørensen, Simulation of multivariate diffusion bridges, J. R. Stat. Soc. Ser. B Stat. Methodol., 78 (2016), pp. 343--369, https://doi.org/10.1111/rssb.12118.
10.
E. Buckwar, M. Tamborrino, and I. Tubikanec, Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs, Stat. Comput., 30 (2020), pp. 627--648.
11.
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), pp. 1661--1664, https://doi.org/10.1103/PhysRevLett.71.1661.
12.
B. Delyon and Y. Hu, Simulation of conditioned diffusion and application to parameter estimation, Stochastic Process. Appl., 116 (2006), pp. 1660--1675, https://doi.org/DOI:10.1016/j.spa.2006.04.004.
13.
M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol., 73 (2011), pp. 123--214, https://doi.org/10.1111/j.1467-9868.2010.00765.x.
14.
E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, Springer Ser. Comput. Math. 31, Springer Science & Business Media, 2006.
15.
D. D. Holm, Variational principles for stochastic fluid dynamics, Proc. A, 471 (2015), 20140963, https://doi.org/10.1098/rspa.2014.0963.
16.
D. D. Holm and J. E. Marsden, Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation, in The Breadth of Symplectic and Poisson Geometry, Springer, 2005, pp. 203--235.
17.
D. D. Holm, J. E. Marsden, and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), pp. 1--81, https://doi.org/10.1006/aima.1998.1721.
18.
D. D. Holm, J. T. Ratnanather, A. Trouvé, and L. Younes, Soliton dynamics in computational anatomy, NeuroImage, 23 (2004), pp. S170--S178, https://doi.org/doi:10.1016/j.neuroimage.2004.07.017.
19.
D. D. Holm and T. M. Tyranowski, Stochastic discrete Hamiltonian variational integrators, BIT, 58 (2018), pp. 1009--1048.
20.
T. Jeulin and M. Yor, eds., Grossissements de filtrations: Exemples et applications, Papers from the seminar on stochastic calculus held at the Université de Paris VI, Paris, 1982/1983, Lecture Notes in Math. 1118, Springer-Verlag, Berlin, 1985, https://doi.org/10.1007/BFb0075765.
21.
S. Joshi and M. Miller, Landmark matching via large deformation diffeomorphisms, Proc. IEEE Trans. Image Process., 9 (2000), pp. 1357--1370.
22.
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Grad. Texts in Math. 113, Springer-Verlag, New York, 1991, https://doi.org/10.1007/978-1-4612-0949-2.
23.
D. G. Kendall, Shape manifolds, procrustean metrics, and complex projective spaces, Bull. London Math. Soc., 16 (1984), pp. 81--121, https://doi.org/10.1112/blms/16.2.81.
24.
F. C. Klebaner, Introduction to Stochastic Calculus with Applications, World Scientific, 2012.
25.
L. Kühnel and S. Sommer, Computational anatomy in Theano, in Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics, Springer, 2017, pp. 164--176.
26.
L. Kühnel, S. Sommer, and A. Arnaudon, Differential geometry and stochastic dynamics with deep learning numerics, Appl. Math. Comput., 356 (2019), pp. 411--437.
27.
J.-L. Marchand, Conditioning Diffusions with Respect to Partial Observations, preprint, https://arxiv.org/abs/1105.1608, 2011.
28.
B. Markussen, Large deformation diffeomorphisms with application to optic flow, Comput. Vis. Image Underst., 106 (2007), pp. 97--105, https://doi.org/10.1016/j.cviu.2005.09.006.
29.
S. Marsland and T. Shardlow, Langevin equations for landmark image registration with uncertainty, SIAM J. Imaging Sci., 10 (2017), pp. 782--807, https://doi.org/10.1137/16M1079282.
30.
M. Mider, M. Schauer, and F. van der Meulen, Continuous-discrete smoothing of diffusions, Electron. J. Stat., 15 (2021), pp. 4295--4342, https://arxiv.org/abs/1712.03807.
31.
G. N. Milstein, Y. M. Repin, and M. V. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure, SIAM J. Numer. Anal., 40 (2002), pp. 1583--1604, https://doi.org/10.1137/S0036142901395588.
32.
X. Niu, J. Cui, J. Hong, and Z. Liu, Explicit pseudo-symplectic methods for stochastic Hamiltonian systems, BIT, 58 (2018), pp. 163--178, https://doi.org/10.1007/s10543-017-0668-7.
33.
B. Øksendal, Stochastic differential equations, in Stochastic Differential Equations, Springer, 2003, pp. 65--84.
34.
O. Papaspiliopoulos and G. Roberts, Importance sampling techniques for estimation of diffusion models, in Statistical Methods for Stochastic Differential Equations, Monographs on Statistics and Applied Probability, Chapman and Hall, 2012, pp. 311--337.
35.
J. Revels, M. Lubin, and T. Papamarkou, Forward-Mode Automatic Differentiation in Julia, preprint, https://arxiv.org/abs/1607.07892, 2016.
36.
G. O. Roberts and O. Stramer, On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm, Biometrika, 88 (2001), pp. 603--621, https://doi.org/10.1093/biomet/88.3.603.
37.
L. C. G. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 2, Itô Calculus, reprint of the 2nd (1994) edition, Cambridge University Press, Cambridge, UK, 2000.
38.
M. Schauer, F. van der Meulen, and H. van Zanten, Guided proposals for simulating multi-dimensional diffusion bridges, Bernoulli, 23 (2017), pp. 2917--2950, https://doi.org/10.3150/16-BEJ833.
39.
S. Sommer, Probabilistic approaches to geometric statistics: Stochastic processes, transition distributions, and fiber bundle geometry, in Riemannian Geometric Statistics in Medical Image Analysis, X. Pennec, S. Sommer, and T. Fletcher, eds., Academic Press, 2020, pp. 377--416, https://doi.org/10.1016/B978-0-12-814725-2.00018-2.
40.
S. Sommer, A. Arnaudon, L. Kuhnel, and S. Joshi, Bridge simulation and metric estimation on landmark manifolds, in Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics, Lecture Notes in Comput. Sci., Springer, 2017, pp. 79--91, https://doi.org/10.1007/978-3-319-67675-3_8.
41.
M. B. Stegmann, R. Fisker, and B. K. Ersbøll, Extending and applying active appearance models for automated, high precision segmentation in different image modalities, Scandinavian Conference on Image Analysis, 2001, pp. 90--97.
42.
A. Trouve and F.-X. Vialard, Shape splines and stochastic shape evolutions: A second order point of view, Quart. Appl. Math., 70 (2012), pp. 219--251, https://doi.org/10.1090/S0033-569X-2012-01250-4.
43.
F. van der Meulen and M. Schauer, Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals, Electron. J. Stat., 11 (2017), pp. 2358--2396, https://doi.org/10.1214/17-EJS1290.
44.
F. van der Meulen and M. Schauer, BridgeLandmarks 0.4, 2021, https://doi.org/doi:10.5281/zenodo.5101751.
45.
F.-X. Vialard, Extension to infinite dimensions of a stochastic second-order model associated with shape splines, Stochastic Process. Appl., 123 (2013), pp. 2110--2157, https://doi.org/10.1016/j.spa.2013.01.012.
46.
L. Younes, Shapes and Diffeomorphisms, Springer, 2010.
47.
L. Younes, F. Arrate, and M. I. Miller, Evolutions equations in computational anatomy, Neuro-Image, 45 (2009), pp. S40--S50, https://doi.org/10.1016/j.neuroimage.2008.10.050.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 293 - 323
ISSN (online): 1936-4954

History

Submitted: 19 March 2021
Accepted: 29 November 2021
Published online: 14 March 2022

Keywords

  1. shape analysis
  2. bridge simulation
  3. conditional diffusion
  4. hypoelliptic diffusion
  5. landmark dynamics
  6. guided proposals
  7. shape matching

MSC codes

  1. 60J60
  2. 65C05
  3. 62F15

Authors

Affiliations

Funding Information

University of Copenhagen
Novo Nordisk Fonden https://doi.org/10.13039/501100009708 : NNF18OC0052000
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/N014529/1
Villum Fonden https://doi.org/10.13039/100008398 : 00022924

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media