We consider a one-dimensional McKean--Vlasov SDE on a domain and the associated mean-field interacting particle system. The peculiarity of this system is the combination of the interaction, which keeps the average position prescribed, and the reflection at the boundaries; these two factors make the effect of reflection nonlocal. We show pathwise well-posedness for the McKean--Vlasov SDE and convergence for the particle system in the limit of large particle number.

  • 1.  L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Springer, New York, 2008.Google Scholar

  • 2.  S. Aida, Rough Differential Equations Containing Path-Dependent Bounded Variation Terms, arXiv:1608.03083, 2016.Google Scholar

  • 3.  C. L. Barnes , Hydrodynamic limit and propagation of chaos for Brownian particles reflecting from a Newtonian barrier , Ann. Appl. Probab. , 30 ( 2020 ), pp. 1582 -- 1613 . CrossrefGoogle Scholar

  • 4.  P. Briand P. Cardaliaguet É. Chaudru de Raynal and  Y. Hu , Forward and backward stochastic differential equations with normal constraints in law , Stochastic Process. Appl. , 130 ( 2020 ), pp. 7021 -- 7097 . CrossrefGoogle Scholar

  • 5.  I. Bailleul R. Catellier and  F. Delarue , Solving mean field rough differential equations , Electron. J. Probab. , 25 ( 2020 ), 21 . CrossrefGoogle Scholar

  • 6.  P. Briand É. Chaudru de Raynal A. Guillin and  C. Labart , Particles systems and numerical schemes for mean reflected stochastic differential equations , Ann. Appl. Probab. , 30 ( 2020 ), pp. 1884 -- 1909 . CrossrefGoogle Scholar

  • 7.  P. Briand R. Elie and  Y. Hu , BSDEs with mean reflection , Ann. Appl. Probab. , 28 ( 2018 ), pp. 482 -- 510 . CrossrefGoogle Scholar

  • 8.  M. Bossy . Jabir, On confined McKean Langevin processes satisfying the mean no-permeability boundary condition , Stochastic Process. Appl. , 121 ( 2011 ), pp. 2751 -- 2775 . CrossrefGoogle Scholar

  • 9.  M. Bossy . Jabir, Lagrangian stochastic models with specular boundary condition , J. Funct. Anal. , 268 ( 2015 ), pp. 1309 -- 1381 . CrossrefGoogle Scholar

  • 10.  M. Bossy . Jabir, Particle approximation for Lagrangian stochastic models with specular boundary condition , Electron. Commun. Probab. , 23 ( 2018 ), 15 . CrossrefGoogle Scholar

  • 11.  E. Boissard . Le Gouic, On the mean speed of convergence of empirical and occupation measures in wasserstein distance , Ann. Inst. Henri Poincaŕe Probab. Stat. , 50 , ( 2014 ), pp. 539 -- 563 . \bibitem[CCP11]CacCarPer2011 M. J. Cáceres, J. A. Carrillo, and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: Blow-up and steady states, J. Math. Neurosci., 1 (2011), 7. \bibitem[CD18]CarDelBookI R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications. I, Mean Field FBSDEs, Control, and Games, Probab. Theory Stoch. Model. 83, Springer, Cham, 2018. Google Scholar

  • 12.  M. Coghi J.-D. Deuschel P. K. Friz and  M. Maurelli , Pathwise McKean-Vlasov theory with additive noise , Ann. Appl. Probab. , 30 ( 2020 ), pp. 2355 -- 2392 . CrossrefGoogle Scholar

  • 13.  T. Cass and  T. Lyons , Evolving communities with individual preferences , Proc. Lond. Math. Soc. (3) , 110 ( 2015 ), pp. 83 -- 107 . CrossrefGoogle Scholar

  • 14.  C. Costantini Skorohod oblique reflection problem in domains with corners and application to stochastic differential equations , Probab. Theory Related Fields , 91 ( 1992 ), pp. 43 -- 70 . CrossrefISIGoogle Scholar

  • 15.  B. Djehiche, R. Elie, and S. Hamadène, Mean-Field Reflected Backward Stochastic Differential Equations, arXiv:1911.06079, 2019.Google Scholar

  • 16.  W. Dreyer C. Guhlke and  M. Herrmann , Hysteresis and phase transition in many-particle storage systems , Contin. Mech. Thermodyn. , 23 ( 2011 ), pp. 211 -- 231 . CrossrefISIGoogle Scholar

  • 17.  A. Deya M. Gubinelli M. Hofmanová and  S. Tindel , One-dimensional reflected rough differential equations , Stochastic Process. Appl. , 129 ( 2019 ), pp. 3261 -- 3281 . CrossrefGoogle Scholar

  • 18.  W. Dreyer R. Huth A. Mielke J. Rehberg and  M. Winkler , Global existence for a nonlocal and nonlinear Fokker-Planck equation , Z. Angew. Math. Phys. , 66 ( 2015 ), pp. 293 -- 315 . CrossrefGoogle Scholar

  • 19.  P. Dupuis and  H. Ishii , On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications , Stochastics Stochastics Rep. , 35 ( 1991 ), pp. 31 -- 62 . CrossrefGoogle Scholar

  • 20.  F. Delarue J. Inglis S. Rubenthaler and  E. Tanré , Global solvability of a networked integrate-and-fire model of McKean-Vlasov type , Ann. Appl. Probab. , 25 ( 2015 ), pp. 2096 -- 2133 . CrossrefISIGoogle Scholar

  • 21.  N. Fournier and  A. Guillin , On the rate of convergence in Wasserstein distance of the empirical measure , Probab. Theory Related Fields , 162 ( 2015 ), pp. 707 -- 738 . CrossrefISIGoogle Scholar

  • 22.  M. Ferrante and  C. Rovira , Stochastic differential equations with non-negativity constraints driven by fractional Brownian motion , J. Evol. Equ. , 13 ( 2013 ), pp. 617 -- 632 . CrossrefGoogle Scholar

  • 23.  C. Guhlke P. Gajewski M. Maurelli P. K. Friz and  W. Dreyer , Stochastic many-particle model for LFP electrodes , Contin. Mech. Thermodyn. , 30 ( 2018 ), pp. 593 -- 628 . CrossrefGoogle Scholar

  • 24.  B. Hambly S. Ledger and  A. Søjmark , A McKean-Vlasov equation with positive feedback and blow-ups , Ann. Appl. Probab. , 29 ( 2019 ), pp. 2338 -- 2373 . CrossrefISIGoogle Scholar

  • 25.  J.-F. Jabir, Diffusion Processes with Weak Constraint Through Penalization Approximation, arXiv:1704.01505, 2017.Google Scholar

  • 26.  V. N. Kolokoltsov Markov semigroups and interacting Lévy type processes , J. Stat. Phys. , 126 ( 2007 ), pp. 585 -- 642 . CrossrefGoogle Scholar

  • 27.  J. Li , Reflected mean-field backward stochastic differential equations. Approximation and associated nonlinear PDEs , J. Math. Anal. Appl. , 413 ( 2014 ), pp. 47 -- 68 . CrossrefGoogle Scholar

  • 28.  P.-L. Lions, Lectures at collège de france, 2008.Google Scholar

  • 29.  P.-L. Lions . Sznitman, Stochastic differential equations with reflecting boundary conditions , Comm. Pure Appl. Math. , 37 ( 1984 ), pp. 511 -- 537 . CrossrefISIGoogle Scholar

  • 30.  S. Méléard , Asymptotic behavior of some interacting particle systems; McKean-Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995), Lecture Notes in Math. 1627, Springer , Berlin , 1996 , pp. 42 -- 95 . Google Scholar

  • 31.  J.-L. Menaldi , Stochastic variational inequality for reflected diffusion , Indiana Univ. Math. J. , 32 ( 1983 ), pp. 733 -- 744 . CrossrefISIGoogle Scholar

  • 32.  K. Nyström and  T. Önskog , Remarks on the Skorohod problem and reflected Lévy driven SDEs in time-dependent domains , Stochastics , 87 ( 2015 ), pp. 747 -- 765 . CrossrefGoogle Scholar

  • 33.  D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed., Grundlehren Math. Wiss. 293, Springer-Verlag, Berlin, 1999.Google Scholar

  • 34.  H. M. Soner , Stochastic representations for nonlinear parabolic PDEs, in Handbook of Differential Equations: Evolutionary Equations. Vol. 3, Elsevier/North-Holland , Amsterdam , 2007 , pp. 477 -- 526 . Google Scholar

  • 35.  A.-S. Sznitman , Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated , J. Funct. Anal. , 56 ( 1984 ), pp. 311 -- 336 . CrossrefISIGoogle Scholar

  • 36.  A.-S. Sznitman , Topics in propagation of chaos, in Ecole d'été de probabilités de Saint-Flour XIX-1989, Springer , Berlin , 1991 , pp. 165 -- 251 . Google Scholar

  • 37.  H. Tanaka , Stochastic differential equations with reflecting boundary condition in convex regions , Hiroshima Math. J. , 9 ( 1979 ), pp. 163 -- 177 . CrossrefGoogle Scholar

  • 38.  H. Tanaka , Limit theorems for certain diffusion processes with interaction, in Stochastic Analysis (Katata/Kyoto, 1982), North-Holland Math. Library 32, North-Holland , Amsterdam , 1984 , pp. 469 -- 488 . Google Scholar