A McKean--Vlasov SDE and Particle System with Interaction from Reflecting Boundaries
Abstract
We consider a one-dimensional McKean--Vlasov SDE on a domain and the associated mean-field interacting particle system. The peculiarity of this system is the combination of the interaction, which keeps the average position prescribed, and the reflection at the boundaries; these two factors make the effect of reflection nonlocal. We show pathwise well-posedness for the McKean--Vlasov SDE and convergence for the particle system in the limit of large particle number.
1. L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Springer, New York, 2008.
2. S. Aida, Rough Differential Equations Containing Path-Dependent Bounded Variation Terms, arXiv:1608.03083, 2016.
3. , Hydrodynamic limit and propagation of chaos for Brownian particles reflecting from a Newtonian barrier , Ann. Appl. Probab. , 30 ( 2020 ), pp. 1582 -- 1613 .
4. , Forward and backward stochastic differential equations with normal constraints in law , Stochastic Process. Appl. , 130 ( 2020 ), pp. 7021 -- 7097 .
5. , Solving mean field rough differential equations , Electron. J. Probab. , 25 ( 2020 ), 21 .
6. , Particles systems and numerical schemes for mean reflected stochastic differential equations , Ann. Appl. Probab. , 30 ( 2020 ), pp. 1884 -- 1909 .
7. , BSDEs with mean reflection , Ann. Appl. Probab. , 28 ( 2018 ), pp. 482 -- 510 .
8. . Jabir, On confined McKean Langevin processes satisfying the mean no-permeability boundary condition , Stochastic Process. Appl. , 121 ( 2011 ), pp. 2751 -- 2775 .
9. . Jabir, Lagrangian stochastic models with specular boundary condition , J. Funct. Anal. , 268 ( 2015 ), pp. 1309 -- 1381 .
10. . Jabir, Particle approximation for Lagrangian stochastic models with specular boundary condition , Electron. Commun. Probab. , 23 ( 2018 ), 15 .
11. . Le Gouic, On the mean speed of convergence of empirical and occupation measures in wasserstein distance , Ann. Inst. Henri Poincaŕe Probab. Stat. , 50 , ( 2014 ), pp. 539 -- 563 . \bibitem[CCP11]CacCarPer2011 M. J. Cáceres, J. A. Carrillo, and B. Perthame, Analysis of nonlinear noisy integrate & fire neuron models: Blow-up and steady states, J. Math. Neurosci., 1 (2011), 7. \bibitem[CD18]CarDelBookI R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications. I, Mean Field FBSDEs, Control, and Games, Probab. Theory Stoch. Model. 83, Springer, Cham, 2018.
12. , Pathwise McKean-Vlasov theory with additive noise , Ann. Appl. Probab. , 30 ( 2020 ), pp. 2355 -- 2392 .
13. , Evolving communities with individual preferences , Proc. Lond. Math. Soc. (3) , 110 ( 2015 ), pp. 83 -- 107 .
14. Skorohod oblique reflection problem in domains with corners and application to stochastic differential equations , Probab. Theory Related Fields , 91 ( 1992 ), pp. 43 -- 70 .
15. B. Djehiche, R. Elie, and S. Hamadène, Mean-Field Reflected Backward Stochastic Differential Equations, arXiv:1911.06079, 2019.
16. , Hysteresis and phase transition in many-particle storage systems , Contin. Mech. Thermodyn. , 23 ( 2011 ), pp. 211 -- 231 .
17. , One-dimensional reflected rough differential equations , Stochastic Process. Appl. , 129 ( 2019 ), pp. 3261 -- 3281 .
18. , Global existence for a nonlocal and nonlinear Fokker-Planck equation , Z. Angew. Math. Phys. , 66 ( 2015 ), pp. 293 -- 315 .
19. , On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications , Stochastics Stochastics Rep. , 35 ( 1991 ), pp. 31 -- 62 .
20. , Global solvability of a networked integrate-and-fire model of McKean-Vlasov type , Ann. Appl. Probab. , 25 ( 2015 ), pp. 2096 -- 2133 .
21. , On the rate of convergence in Wasserstein distance of the empirical measure , Probab. Theory Related Fields , 162 ( 2015 ), pp. 707 -- 738 .
22. , Stochastic differential equations with non-negativity constraints driven by fractional Brownian motion , J. Evol. Equ. , 13 ( 2013 ), pp. 617 -- 632 .
23. , Stochastic many-particle model for LFP electrodes , Contin. Mech. Thermodyn. , 30 ( 2018 ), pp. 593 -- 628 .
24. , A McKean-Vlasov equation with positive feedback and blow-ups , Ann. Appl. Probab. , 29 ( 2019 ), pp. 2338 -- 2373 .
25. J.-F. Jabir, Diffusion Processes with Weak Constraint Through Penalization Approximation, arXiv:1704.01505, 2017.
26. Markov semigroups and interacting Lévy type processes , J. Stat. Phys. , 126 ( 2007 ), pp. 585 -- 642 .
27. , Reflected mean-field backward stochastic differential equations. Approximation and associated nonlinear PDEs , J. Math. Anal. Appl. , 413 ( 2014 ), pp. 47 -- 68 .
28. P.-L. Lions, Lectures at collège de france, 2008.
29. . Sznitman, Stochastic differential equations with reflecting boundary conditions , Comm. Pure Appl. Math. , 37 ( 1984 ), pp. 511 -- 537 .
30. , Asymptotic behavior of some interacting particle systems; McKean-Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995), Lecture Notes in Math. 1627, Springer , Berlin , 1996 , pp. 42 -- 95 .
31. , Stochastic variational inequality for reflected diffusion , Indiana Univ. Math. J. , 32 ( 1983 ), pp. 733 -- 744 .
32. , Remarks on the Skorohod problem and reflected Lévy driven SDEs in time-dependent domains , Stochastics , 87 ( 2015 ), pp. 747 -- 765 .
33. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed., Grundlehren Math. Wiss. 293, Springer-Verlag, Berlin, 1999.
34. , Stochastic representations for nonlinear parabolic PDEs, in Handbook of Differential Equations: Evolutionary Equations. Vol. 3, Elsevier/North-Holland , Amsterdam , 2007 , pp. 477 -- 526 .
35. , Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated , J. Funct. Anal. , 56 ( 1984 ), pp. 311 -- 336 .
36. , Topics in propagation of chaos, in Ecole d'été de probabilités de Saint-Flour XIX-1989, Springer , Berlin , 1991 , pp. 165 -- 251 .
37. , Stochastic differential equations with reflecting boundary condition in convex regions , Hiroshima Math. J. , 9 ( 1979 ), pp. 163 -- 177 .
38. , Limit theorems for certain diffusion processes with interaction, in Stochastic Analysis (Katata/Kyoto, 1982), North-Holland Math. Library 32, North-Holland , Amsterdam , 1984 , pp. 469 -- 488 .