The increasing availability of data presents an opportunity to calibrate unknown parameters which appear in complex models of phenomena in the biomedical, physical, and social sciences. However, model complexity often leads to parameter-to-data maps which are expensive to evaluate and are only available through noisy approximations. This paper is concerned with the use of interacting particle systems for the solution of the resulting inverse problems for parameters. Of particular interest is the case where the available forward model evaluations are subject to rapid fluctuations, in parameter space, superimposed on the smoothly varying large-scale parametric structure of interest. A motivating example from climate science is presented, and ensemble Kalman methods (which do not use the derivative of the parameter-to-data map) are shown, empirically, to perform well. Multiscale analysis is then used to analyze the behavior of interacting particle system algorithms when rapid fluctuations, which we refer to as noise, pollute the large-scale parametric dependence of the parameter-to-data map. Ensemble Kalman methods and Langevin-based methods (the latter use the derivative of the parameter-to-data map) are compared in this light. The ensemble Kalman methods are shown to behave favorably in the presence of noise in the parameter-to-data map, whereas Langevin methods are adversely affected. On the other hand, Langevin methods have the correct equilibrium distribution in the setting of noise-free forward models, while ensemble Kalman methods only provide an uncontrolled approximation, except in the linear case. Therefore a new class of algorithms, ensemble Gaussian process samplers, which combine the benefits of both ensemble Kalman and Langevin methods, are introduced and shown to perform favorably.


  1. ensemble methods
  2. ensemble Kalman sampler
  3. Langevin sampling
  4. Gaussian process regression
  5. multiscale analysis

MSC codes

  1. 60H30
  2. 35B27
  3. 60G15
  4. 82C80
  5. 65C35
  6. 62F15

Get full access to this article

View all available purchase options and get full access to this article.


C. Andrieu and G. O. Roberts, The pseudo-marginal approach for efficient Monte Carlo computations, Ann. Statist., 37 (2009), pp. 697--725.
V. Araújo, I. Melbourne, and P. Varandas, Rapid mixing for the Lorenz attractor and statistical limit laws for their time-$1$ maps, Comm. Math. Phys., 340 (2015), pp. 901--938.
R. Asselin, Frequency filter for time integrations, Monthly Weather Review, 100 (1972), pp. 487--490.
M. Baity-Jesi, L. Sagun, M. Geiger, S. Spigler, G. B. Arous, C. Cammarota, Y. LeCun, M. Wyart, and G. Biroli, Comparing dynamics: Deep neural networks versus glassy systems, in Proceedings of the International Conference on Machine Learning, 2018, pp. 314--323.
A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl. 374, AMS, Providence, RI, 2011.
N. Bou-Rabee and E. Vanden-Eijnden, Pathwise accuracy and ergodicity of metropolized integrators for SDEs, Comm. Pure Appl. Math., 63 (2010), pp. 655--696.
O. Cappé, A. Guillin, J.-M. Marin, and C. P. Robert, Population Monte Carlo, J. Comput. Graph. Statist., 13 (2004), pp. 907--929.
J. Carrillo and U. Vaes, Wasserstein stability estimates for covariance-preconditioned Fokker--Planck equations, Nonlinearity, 34 (2021), pp. 2275--2295.
R. Chandra, D. Azam, R. D. Müller, T. Salles, and S. Cripps, Bayeslands: A Bayesian inference approach for parameter uncertainty quantification in Badlands, Comput. Geosci., 131 (2019), pp. 89--101.
E. Cleary, A. Garbuno-Inigo, S. Lan, T. Schneider, and A. M. Stuart, Calibrate, emulate, sample, J. Comput. Phy., 424 (2021).
S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White, Mcmc methods for functions: modifying old algorithms to make them faster, Statist. Science, 28 (2013), pp. 424--446.
S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B, 195 (1987), pp. 216--222.
O. R. A. Dunbar, A. Garbuno-Inigo, T. Schneider, and A. M. Stuart, Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM, preprint, https://arxiv.org/abs/2012.13262, 2020.
A. Duncan, N. Nuesken, and L. Szpruch, On the Geometry of Stein Variational Gradient Descent, preprint, https://arxiv.org/abs/1912.00894, 2019.
C. Frederick and B. Engquist, Numerical methods for multiscale inverse problems, Commun. Math. Sci., 15 (2017), pp. 305--328.
D. M. W. Frierson, The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation, J. Atmos. Sci., 64 (2007), pp. 1959--1976.
D. M. W. Frierson, I. M. Held, and P. Zurita-Gotor, A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale, J. Atmos. Sci., 63 (2006), pp. 2548--2566.
A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart, Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 412-- 441.
A. Garbuno-Inigo, N. Nüsken, and S. Reich, Affine invariant interacting Langevin dynamics for Bayesian inference, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 1633--1658.
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis, CRC Press, Boca Raton, FL, 2013.
A. Gelman, D. Simpson, and M. Betancourt, The prior can often only be understood in the context of the likelihood, Entropy, 19 (2017), p. 555.
C. J. Geyer, Markov Chain Monte Carlo Maximum Likelihood, Interface Foundation of North America, 1991.
M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol., 73 (2011), pp. 123--214.
D. Givon, R. Kupferman, and A. Stuart, Extracting macroscopic dynamics: Model problems and algorithms, Nonlinearity, 17 (2004), R55.
S. Gomes, G. Pavliotis, and U. Vaes, Mean-field limits for interacting diffusions with colored noise: Phase transitions and spectral numerical methods, SIAM Multiscale Model. Simul., 18 (2020).
S. N. Gomes and G. A. Pavliotis, Mean field limits for interacting diffusions in a two-scale potential, J. Nonlinear Sci., 28 (2018), pp. 905--941.
S. N. Gomes, A. M. Stuart, and M.-T. Wolfram, Parameter estimation for macroscopic pedestrian dynamics models from microscopic data, SIAM J. Appl. Math., 79 (2019), pp. 1475--1500.
J. Goodman and J. Weare, Ensemble samplers with affine invariance, Commun. Appl. Math. Comput. Sci., 5 (2010), pp. 65--80.
P. J. Green and A. Mira, Delayed rejection in reversible jump Metropolis--Hastings, Biometrika, 88 (2001), pp. 1035--1053.
H. Haario, M. Laine, A. Mira, and E. Saksman, Dram: efficient adaptive MCMC, Stat. Comput., 16 (2006), pp. 339--354.
D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne, Combining field data and computer simulations for calibration and prediction, SIAM J. Sci. Comput., 26 (2004), pp. 448--466.
Y. Iba, Population Monte Carlo algorithms trans, Trans. Jpn. Soc. Artif. Intell., 16 (2000).
M. A. Iglesias, K. J. Law, and A. M. Stuart, Ensemble Kalman methods for inverse problems, Inverse Problems, 29 (2013), 045001.
H. Järvinen, M. Laine, A. Solonen, and H. Haario, Ensemble prediction and parameter estimation system: The concept, Quart. J. Royal Meteorological Society, 138 (2012), pp. 281--288.
A. Jasra, D. A. Stephens, and C. C. Holmes, On population-based simulation for static inference, Stat. Comput., 17 (2007), pp. 263--279.
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer, New York, 2006.
M. C. Kennedy and A. O'Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), pp. 425--464.
M. C. Kennedy and A. O'Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), pp. 425--464.
N. B. Kovachki and A. M. Stuart, Ensemble Kalman inversion: A derivative-free technique for machine learning tasks, Inverse Problems, 35 (2019), 095005, https://doi.org/10.1088/1361-6420/ab1c3a.
D. G. Krige, A statistical approach to some basic mine valuation problems on the witwatersrand, J. Southern African Institute Mining Metallurgy, 52 (1951), pp. 119--139.
S. Lan, T. Bui-Thanh, M. Christie, and M. Girolami, Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian inverse problems, J. Comput. Phys., 308 (2016), pp. 81--101.
B. Leimkuhler, C. Matthews, and J. Weare, Ensemble preconditioning for Markov Chain Monte Carlo simulation, Stat. Comput., 28 (2018), pp. 277--290.
J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer, New York, 2008.
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci., 20 (1963), pp. 130--141.
D. Maoutsa, S. Reich, and M. Opper, Interacting particle solutions of Fokker-Planck equations through gradient-log-density estimation, Entropy, 22 (2020).
M. Morzfeld, J. Adams, S. Lunderman, and R. Orozco, Feature-based data assimilation in geophysics, Nonlinear Processes Geophysics, 25 (2018), pp. 355--374.
N. Nüsken and S. Reich, Note on Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler by Garbuno-Inigo, Hoffmann, Li and Stuart, preprint, https://arxiv.org/abs/1908.10890, 2019.
J. Oakley and A. O'Hagan, Bayesian inference for the uncertainty distribution of computer model outputs, Biometrika, 89 (2002), pp. 769--784.
J. Oakley and A. O'Hagan, Probabilistic sensitivity analysis of complex models: A Bayesian approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 66 (2004), pp. 751--769.
P. A. O'Gorman and T. Schneider, The hydrological cycle over a wide range of climates simulated with an idealized GCM, J. Climate, 21 (2008), pp. 3815--3832.
D. S. Oliver, A. C. Reynolds, and N. Liu, Inverse Theory for Petroleum Reservoir Characterization and History Matching, Cambridge University Press, Cambridge, UK, 2008.
S. Olla, Homogenization of Diffusion Processes in Random Fields, École Polytechnique, 1994.
S. Pathiraja and S. Reich, Discrete gradients for computational Bayesian inference, J. Comput. Dyn., 6 (2019).
G. Pavliotis and A. Stuart, Multiscale Methods: Averaging and Homogenization, Springer, New York, 2008.
G. Pavliotis, A. Stuart, and U. Vaes, Derivative-Free Bayesian Inversion Using Multiscale Dynamics, preprint, https://arxiv.org/abs/2102.00540, 2021.
G. A. Pavliotis, Stochastic Processes and Applications, Springer, New York, 2015.
P. Plecháč and G. Simpson, Sampling from Rough Energy Landscapes, preprint, https://arxiv.org/abs/1903.09998, 2019.
S. Reich, Data assimilation: The Schrödinger perspective, Acta Numer., 28 (2019), pp. 635--711.
S. Reich and S. Weissmann, Fokker--Planck particle systems for Bayesian inference: Computational approaches, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 446--482.
A. J. Robert, The integration of a low order spectral form of the primitive meteorological equations, J. Meteorological Society Japan. Ser. II, 44 (1966), pp. 237--245.
G. O. Roberts and R. L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli, 2 (1996), pp. 341--363.
J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statist. Sci., 4 (1989), pp. 409--423.
M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer, New York, 2012.
H. Strathmann, D. Sejdinovic, S. Livingstone, Z. Szabo, and A. Gretton, Gradient-free Hamiltonian Monte Carlo with efficient kernel exponential families, in Advances in Neural Information Processing Systems, 2015, pp. 955--963.
R. H. Swendsen and J.-S. Wang, Replica Monte Carlo simulation of spin-glasses, Phys. Rev. Lett., 57 (1986), pp. 2607--2609.
P. D. Williams, A proposed modification to the robert--asselin time filter, Monthly Weather Review, 137 (2009), pp. 2538--2546.
L. Yan and T. Zhou, An adaptive surrogate modeling based on deep neural networks for large-scale Bayesian inverse problems, Commun. Comput. Phys., 28 (2020).
F. Zhang, Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, What is the predictability limit of midlatitude weather?, J. Atmospheric Sci., 76 (2019), pp. 1077--1091, https://doi.org/10.1175/JAS-D-18-0269.1.
J. Zhang and A. A. Taflanidis, Accelerating MCMC via Kriging-based adaptive independent proposals and delayed rejection, Comput. Methods Appl. Mech. Engrg., 355 (2019), pp. 1124--1147.

Information & Authors


Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 1539 - 1572
ISSN (online): 1536-0040


Submitted: 8 April 2021
Accepted: 8 March 2022
Published online: 21 June 2022


  1. ensemble methods
  2. ensemble Kalman sampler
  3. Langevin sampling
  4. Gaussian process regression
  5. multiscale analysis

MSC codes

  1. 60H30
  2. 35B27
  3. 60G15
  4. 82C80
  5. 65C35
  6. 62F15



Funding Information

Austrian Academy of Sciences : NST-0001
Alan Turing Institute https://doi.org/10.13039/100012338
Office of Naval Research https://doi.org/10.13039/100000006 : N00014-17-1-2079
National Science Foundation https://doi.org/10.13039/100000001 : DMS-1818977, AGS-1835860
Royal Society https://doi.org/10.13039/501100000288
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/T001569/1

Metrics & Citations



If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options


View PDF







Copy the content Link

Share with email

Email a colleague

Share on social media

On May 28, 2024, our site will enter Read Only mode for a limited time in order to complete a platform upgrade. As a result, the following functions will be temporarily unavailable: registering new user accounts, any updates to existing user accounts, access token activations, and shopping cart transactions. Contact [email protected] with any questions.