Abstract.

In computed tomography, data consist of measurements of the attenuation of X-rays passing through an object. The goal is to reconstruct the linear attenuation coefficient of the object’s interior. For each position of the X-ray source, characterized by its angle with respect to a fixed coordinate system, one measures a set of data referred to as a view. A common assumption is that these view angles are known, but in some applications they are known with imprecision. We propose a framework to solve a Bayesian inverse problem that jointly estimates the view angles and an image of the object’s attenuation coefficient. We also include a few hyperparameters that characterize the likelihood and the priors. Our approach is based on a Gibbs sampler where the associated conditional densities are simulated using different sampling schemes—hence the term hybrid. In particular, the conditional distribution associated with the reconstruction is nonlinear in the image pixels, and is non-Gaussian and high-dimensional. We approach this distribution by constructing a Laplace approximation that represents the target conditional locally at each Gibbs iteration. This enables sampling of the attenuation coefficients in an efficient manner using iterative reconstruction algorithms. The numerical results show that our algorithm is able to jointly identify the image and the view angles, while also providing uncertainty estimates of both. We demonstrate our method with 2D X-ray computed tomography problems using fan beam configurations.

Keywords

  1. computed tomography
  2. Bayesian inverse problems
  3. Gibbs sampler
  4. Laplace approximation
  5. stochastic Newton MCMC

MSC codes

  1. 60G60
  2. 62F15
  3. 65C05
  4. 65R32
  5. 65F22

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Agapiou, J. M. Bardsley, O. Papaspiliopoulos, and A. M. Stuart, Analysis of the Gibbs sampler for hierarchical inverse problems, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 511–544, https://doi.org/10.1137/130944229.
2.
C. Andrieu and J. Thoms, A tutorial on adaptive MCMC, Stat. Comput., 18 (2008), pp. 343–373.
3.
J. M. Bardsley, Laplace-distributed increments, the Laplace prior, and edge-preserving regularization, J. Inverse Ill-Posed Probl., 20 (2012), pp. 271–285.
4.
J. M. Bardsley, Computational Uncertainty Quantification for Inverse Problems, SIAM, 2019.
5.
S. Basu and Y. Bresler, Feasibility of tomography with unknown view angles, IEEE Trans. Image Process., 9 (2000), pp. 1107–1122.
6.
Å. Björck, Numerical Methods for Least Squares Problems, SIAM, 1996, https://doi.org/10.1137/1.9781611971484.
7.
M. Burger, A. Hauptmann, T. Helin, N. Hyvönen, and J.-P. Puska, Sequentially Optimized Projections in X-ray Imaging, preprint, https://arxiv.org/abs/2006.12579, 2020.
8.
D. Calvetti and E. Somersalo, Hypermodels in the Bayesian imaging framework, Inverse Problems, 24 (2008), 034013.
9.
T. F. Chan and P. Mulet, On the convergence of the lagged diffusivity fixed point method in total variation image restoration, SIAM J. Numer. Anal., 36 (1999), pp. 354–367, https://doi.org/10.1137/S0036142997327075.
10.
M. M. Dunlop, M. A. Iglesias, and A. M. Stuart, Hierarchical Bayesian level set inversion, Stat. Comput., 27 (2017), pp. 1555–1584.
11.
N. I. Fisher, Statistical Analysis of Circular Data, Cambridge University Press, 1995.
12.
D. Gamerman and H. F. Lopes, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd ed., Chapman and Hall/CRC, 2006.
13.
A. Gelman, Prior distributions for variance parameters in hierarchical models, Bayesian Anal., 1 (2006), pp. 515–533.
14.
S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6 (1984), pp. 721–741.
15.
M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol., 73 (2011), pp. 123–214.
16.
P. Gravel, G. Beaudoin, and J. A. De Guise, A method for modeling noise in medical images, IEEE Trans. Med. Imaging, 23 (2004), pp. 1221–1232.
17.
H. Haario, E. Saksman, and J. Tamminen, An adaptive Metropolis algorithm, Bernoulli, 7 (2001), pp. 223–242.
18.
P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010, https://doi.org/10.1137/1.9780898718836.
19.
P. C. Hansen and J. S. Jørgensen, AIR Tools II: algebraic iterative reconstruction methods, improved implementation, Numer. Algorithms, 79 (2018), pp. 107–137.
20.
P. C. Hansen, J. S. Jørgensen, and W. R. B. Lionheart, Computed Tomography: Algorithms, Insight, and Just Enough Theory, SIAM, 2021, https://doi.org/10.1137/1.9781611976670.
21.
G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed., Springer, 2010.
22.
D. Higdon, A primer on space-time modeling from a Bayesian perspective, in Statistical Methods for Spatio-Temporal Systems, B. Finkenstädt, L. Held, and V. Isham, eds., Chapman & Hall/CRC, 2007, pp. 217–279.
23.
B. Hosseini, Well-posed Bayesian inverse problems with infinitely divisible and heavy-tailed prior measures, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1024–1060, https://doi.org/10.1137/16M1096372.
24.
A. A. Johnson, G. L. Jones, and R. C. Neath, Component-wise Markov chain Monte Carlo: Uniform and geometric ergodicity under mixing and composition, Stat. Sci., 28 (2013), pp. 360–375.
25.
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2005.
26.
V. Kolehmainen, S. Siltanen, S. Järvenpää, J. P. Kaipio, P. Koistinen, M. Lassas, J. Pirttilä, and E. Somersalo, Statistical inversion for medical x-ray tomography with few radiographs: II. Application to dental radiology, Phys. Med. Biol., 48 (2003), pp. 1465–1490.
27.
L. Lamberg and L. Ylinen, Two-dimensional tomography with unknown view angles, Inverse Probl. Imaging, 1 (2007), pp. 623–642.
28.
M. Lassas, E. Saksman, and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse Probl. Imaging, 3 (2009), pp. 87–122.
29.
M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), pp. 1537–1563.
30.
S. P. Mallick, S. Agarwal, D. J. Kriegman, S. J. Belongie, B. Carragher, and C. S. Potter, Structure and view estimation for tomographic reconstruction: A Bayesian approach, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, 2006, pp. 2253–2260.
31.
M. Markkanen, L. Roininen, J. M. J. Huttunen, and S. Lasanen, Cauchy difference priors for edge-preserving Bayesian inversion, J. Inverse Ill-Posed Probl., 27 (2019), pp. 225–240.
32.
J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas, A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion, SIAM J. Sci. Comput., 34 (2012), pp. A1460–A1487, https://doi.org/10.1137/110845598.
33.
P. Müller, A Generic Approach to Posterior Integration and Gibbs Sampling, Tech. Report 91-09, Department of Statistics, Purdue University, 1990.
34.
C. Nemeth and P. Fearnhead, Stochastic gradient Markov chain Monte Carlo, J. Amer. Stat. Assoc., 116 (2021), pp. 433–450.
35.
S. Niebler, E. Schömer, H. Tjaden, U. Schwanecke, and R. Schulze, Projection-based improvement of 3D reconstructions from motion-impaired dental cone beam CT data, Med. Phys., 46 (2019), pp. 4470–4480.
36.
F. Orieux, O. Féron and J.-F. Giovannelli. Gradient scan Gibbs sampler: an efficient high-dimensional sampler application in inverse problems. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 4085–4089.
37.
A. B. Owen, Monte Carlo Theory, Methods and Examples, statweb.stanford.edu/∼owen/mc/, 2013.
38.
V. M. Panaretos, On random tomography with unobservable projection angles, Ann. Statist., 37 (2009), pp. 3272–3306.
39.
Y. Qi and T. P. Minka, Hessian-based Markov chain Monte-Carlo algorithms, in First Cape Cod Workshop on Monte Carlo Methods, 2002, pp. 1–13, https://www.microsoft.com/en-us/research/publication/hessian-based-markov-chain-monte-carlo-algorithms/.
40.
M. Radermacher, Three-dimensional reconstruction from random projections: orientational alignment via Radon transforms, Ultramicroscopy, 53 (1994), pp. 121–136.
41.
N. A. B. Riis, Y. Dong, and P. C. Hansen, Computed tomography with view angle estimation using uncertainty quantification, Inverse Problems, 37 (2020), 065007.
42.
C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed., Springer, 2004.
43.
G. O. Roberts and J. S. Rosenthal, Two convergence properties of hybrid samplers, Ann. Appl. Probab., 8 (1998), pp. 397–407.
44.
J. S. Rosenthal, A First Look at Rigorous Probability Theory, 2nd ed., World Scientific, 2006.
45.
C. Schillings, B. Sprungk, and P. Wacker, On the convergence of the Laplace approximation and noise-level-robustness of Laplace-based Monte Carlo methods for Bayesian inverse problems, Numer. Math., 145 (2020), pp. 915–971.
46.
A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), pp. 451–559.
47.
L. Tierney and J. B. Kadane, Accurate approximations for posterior moments and marginal densities, J. Amer. Stat. Assoc., 81 (1986), pp. 82–86.
48.
W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, Fast and flexible X-ray tomography using the ASTRA toolbox, Opt. Express, 24 (2016), pp. 25129–25147.
49.
T. van Leeuwen, S. Maretzke, and K. J. Batenburg, Automatic alignment for three-dimensional tomographic reconstruction, Inverse Problems, 34 (2018), 024004.
50.
C. R. Vogel, Computational Methods for Inverse Problems, SIAM, 2002, https://doi.org/10.1137/1.9780898717570.
51.
C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), pp. 227–238, https://doi.org/10.1137/0917016.
52.
C. Yang, E. G. Ng, and P. A. Penczek, Unified 3-D structure and projection orientation refinement using quasi-Newton algorithm, J. Struct. Biol., 149 (2005), pp. 53–64.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 1293 - 1320
ISSN (online): 2166-2525

History

Submitted: 14 April 2021
Accepted: 29 March 2022
Published online: 30 September 2022

Keywords

  1. computed tomography
  2. Bayesian inverse problems
  3. Gibbs sampler
  4. Laplace approximation
  5. stochastic Newton MCMC

MSC codes

  1. 60G60
  2. 62F15
  3. 65C05
  4. 65R32
  5. 65F22

Authors

Affiliations

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, DK-2800 Kgs. Lyngby, Denmark ([email protected], [email protected], [email protected], [email protected]).
Johnathan M. Bardsley
Department of Mathematical Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA ([email protected]).
Yiqiu Dong
Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, DK-2800 Kgs. Lyngby, Denmark ([email protected], [email protected], [email protected], [email protected]).
Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, DK-2800 Kgs. Lyngby, Denmark ([email protected], [email protected], [email protected], [email protected]).
Nicolai A. B. Riis
Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, DK-2800 Kgs. Lyngby, Denmark ([email protected], [email protected], [email protected], [email protected]).

Funding Information

This work was supported by Villum Investigator grant 25893 from The Villum Foundation.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media