Abstract

The magnetohydrodynamics (MHD) equations are generally known to be difficult to solve numerically, due to their highly nonlinear structure and the strong coupling between the electromagnetic and hydrodynamic variables, especially for high Reynolds and coupling numbers. In this work, we present a scalable augmented Lagrangian preconditioner for a finite element discretization of the $B$-$E$ formulation of the incompressible viscoresistive MHD equations. For stationary problems, our solver achieves robust performance with respect to the Reynolds and coupling numbers in two dimensions and good results in three dimensions. We extend our method to fully implicit methods for time-dependent problems which we solve robustly in both two and three dimensions. Our approach relies on specialized parameter-robust multigrid methods for the hydrodynamic and electromagnetic blocks. The scheme ensures exactly divergence-free approximations of both the velocity and the magnetic field up to solver tolerances. We confirm the robustness of our solver by numerical experiments in which we consider fluid and magnetic Reynolds numbers and coupling numbers up to 10,000 for stationary problems and up to 100,000 for transient problems in two and three dimensions.

Keywords

  1. magnetohydrodynamics (MHD)
  2. multigrid
  3. augmented Lagrangian

MSC codes

  1. 65N55
  2. 65N30
  3. 65F10
  4. 65F08

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. H. Adler, T. R. Benson, E. C. Cyr, P. E. Farrell, S. P. MacLachlan, and R. S. Tuminaro, Monolithic multigrid methods for magnetohydrodynamics, SIAM J. Sci. Comput., 43 (2021), pp. S70--S91, https://doi.org/10.1137/20m1348364.
2.
J. H. Adler, T. R. Benson, E. C. Cyr, S. P. MacLachlan, and R. S. Tuminaro, Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics, SIAM J. Sci. Comput., 38 (2016), pp. B1--B24, https://doi.org/10.1137/151006135.
3.
P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15--41, https://doi.org/10.1137/S0895479899358194.
4.
F. Armero and J. Simo, Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier--Stokes equations, Comput. Methods Appl. Mech. Engrg., 131 (1996), pp. 41--90, https://doi.org/10.1016/0045-7825(95)00931-0.
5.
D. N. Arnold, Finite Element Exterior Calculus, CBMS-NSF Regional Conf. Ser. in Appl. Math. 93, SIAM, Philadelphia, 2018, https://doi.org/10.1137/1.9781611975543.
6.
D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in $H({div})$ and $H({curl})$, Numer. Math., 85 (2000), pp. 197--217, https://doi.org/10.1007/pl00005386.
7.
D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), pp. 1--155, https://doi.org/10.1017/S0962492906210018.
8.
C. Bacuta, A unified approach for Uzawa algorithms, SIAM J. Numer. Anal., 44 (2006), pp. 2633--2649, https://doi.org/10.1137/050630714.
9.
S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Technical Report ANL-95/11 - Revision 3.15, Argonne National Laboratory, Argonne, IL, 2021.
10.
M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1--137, https://doi.org/10.1017/S0962492904000212.
11.
M. Benzi and M. A. Olshanskii, An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comput., 28 (2006), pp. 2095--2113, https://doi.org/10.1137/050646421.
12.
D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer, Berlin, 2013, https://doi.org/10.1007/978-3-642-36519-5.
13.
J. Brackbill and D. Barnes, The effect of nonzero $\nabla$ $\cdotp {B}$ on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35 (1980), pp. 426--430, https://doi.org/10.1016/0021-9991(80)90079-0.
14.
F. Brezzi, J. Douglas, and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217--235, https://doi.org/10.1007/bf01389710.
15.
E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: A continuous interior penalty method, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 2393--2410, https://doi.org/10.1016/j.cma.2005.05.009.
16.
L. Chacón, Scalable parallel implicit solvers for 3D magnetohydrodynamics, J. Phys. Conf. Ser., 125 (2008), 012041, https://doi.org/10.1088/1742-6596/125/1/012041.
17.
L. Chen, Y. Wu, L. Zhong, and J. Zhou, MultiGrid preconditioners for mixed finite element methods of the vector Laplacian, J. Sci. Comput., 77 (2018), pp. 101--128, https://doi.org/10.1007/s10915-018-0697-7.
18.
E. C. Cyr, J. N. Shadid, R. S. Tuminaro, R. P. Pawlowski, and L. Chacón, A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD, SIAM J. Sci. Comput., 35 (2013), pp. B701--B730, https://doi.org/10.1137/12088879x.
19.
W. Dai and P. R. Woodward, On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamical flows, Astrophys. J., 494 (1998), pp. 317--335, https://doi.org/10.1086/305176.
20.
C. Davies, M. Pozzo, D. Gubbins, and D. Alfè, Constraints from material properties on the dynamics and evolution of earth's core, Nature Geosci., 8 (2015), pp. 678--685, https://doi.org/10.1038/ngeo2492.
21.
J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, in Computing Methods in Applied Sciences, Vol. 58, Springer, Berlin, 1976, pp. 207--216, https://doi.org/10.1007/BFb0120591.
22.
H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers, Oxford University Press, Oxford, 2014, https://doi.org/10.1093/acprof:oso/9780199678792.001.0001.
23.
P. E. Farrell, M. G. Knepley, L. Mitchell, and F. Wechsung, PCPATCH: Software for the topological construction of multigrid relaxation methods, ACM Trans. Math. Softw., 47 (2021), pp. 1--22, https://doi.org/10.1145/3445791.
24.
P. E. Farrell, L. Mitchell, L. R. Scott, and F. Wechsung, A Reynolds-robust preconditioner for the Scott--Vogelius discretization of the stationary incompressible Navier--Stokes equations, SMAI J. Comput. Math., 7 (2021), pp. 75--96, https://doi.org/10.5802/smai-jcm.72.
25.
P. E. Farrell, L. Mitchell, and F. Wechsung, An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier--Stokes equations at high Reynolds number, SIAM J. Sci. Comput., 41 (2019), pp. A3073--A3096, https://doi.org/10.1137/18m1219370.
26.
N. R. Gauger, A. Linke, and P. W. Schroeder, On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond, SMAI J. Comput. Math., 5 (2019), pp. 89--129, https://doi.org/10.5802/smai-jcm.44.
27.
J.-F. Gerbeau, C. L. Bris, and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford University Press, Oxford, 2006, https://doi.org/10.1093/acprof:oso/9780198566656.001.0001.
28.
T. Heister and G. Rapin, Efficient augmented Lagrangian-type preconditioning for the Oseen problem using grad-div stabilization, Internat. J. Numer. Methods Fluids, 71 (2013), pp. 118--134, https://doi.org/10.1002/fld.3654.
29.
Q. Hong, J. Kraus, J. Xu, and L. Zikatanov, A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations, Numer. Math., 132 (2015), pp. 23--49, https://doi.org/10.1007/s00211-015-0712-y.
30.
K. Hu, Y. Ma, and J. Xu, Stable finite element methods preserving $\nabla \cdot B = 0$ exactly for MHD models, Numer. Math., 135 (2016), pp. 371--396, https://doi.org/10.1007/s00211-016-0803-4.
31.
K. Hu, W. Qiu, and K. Shi, Convergence of a B-E based finite element method for MHD models on Lipschitz domains, J. Comput. Appl. Math., 368 (2020), 112477, https://doi.org/10.1016/j.cam.2019.112477.
32.
K. Hu and J. Xu, Structure-preserving finite element methods for stationary MHD models, Math. Comp., 88 (2018), pp. 553--581, https://doi.org/10.1090/mcom/3341.
33.
V. John, A. Linke, C. Merdon, M. Neilan, and L. G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., 59 (2017), pp. 492--544, https://doi.org/10.1137/15m1047696.
34.
D. A. Knoll and L. Chacón, Coalescence of magnetic islands, sloshing, and the pressure problem, Phys. Plasmas, 13 (2006), 032307, https://doi.org/10.1063/1.2173515.
35.
L. Li and W. Zheng, A robust solver for the finite element approximation of stationary incompressible MHD equations in 3D, J. Comput. Phys., 351 (2017), pp. 254--270, https://doi.org/10.1016/j.jcp.2017.09.025.
36.
Y. Ma, K. Hu, X. Hu, and J. Xu, Robust preconditioners for incompressible MHD models, J. Comput. Phys., 316 (2016), pp. 721--746, https://doi.org/10.1016/j.jcp.2016.04.019.
37.
S. Molokov, R. Moreau, and K. Moffatt, Magnetohydrodynamics, Springer, Dordrecht, Netherlands, 2007, https://doi.org/10.1007/978-1-4020-4833-3.
38.
J.-C. Nédélec, Mixed finite elements in ${\r}^3$, Numer. Math., 35 (1980), pp. 315--341, https://doi.org/10.1007/BF01396415.
39.
J.-C. Nédélec, A new family of mixed finite elements in ${\r}^3$, Numer. Math., 50 (1986), pp. 57--81, https://doi.org/10.1007/bf01389668.
40.
E. G. Phillips, Fast Solvers and Uncertainty Quantification for Models of Magnetohydrodynamics, Ph.D. thesis, University of Maryland, College Park, MD, 2014.
41.
E. G. Phillips, H. C. Elman, E. C. Cyr, J. N. Shadid, and R. P. Pawlowski, A block preconditioner for an exact penalty formulation for stationary MHD, SIAM J. Sci. Comput., 36 (2014), pp. B930--B951, https://doi.org/10.1137/140955082.
42.
E. G. Phillips, J. N. Shadid, E. C. Cyr, H. C. Elman, and R. P. Pawlowski, Block preconditioners for stable mixed nodal and edge finite element representations of incompressible resistive MHD, SIAM J. Sci. Comput., 38 (2016), pp. B1009--B1031, https://doi.org/10.1137/16M1074084.
43.
F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite element method by composing abstractions, ACM Trans. Math. Software, 43 (2016), 24, https://doi.org/10.1145/2998441.
44.
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., Springer, Berlin, 1977, pp. 292--315, https://doi.org/10.1007/bfb0064470.
45.
Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993), pp. 461--469, https://doi.org/10.1137/0914028.
46.
J. Schöberl, Robust Multigrid Methods for Parameter Dependent Problems, Ph.D. thesis, Johannes Kepler Universität Linz, Linz, Austria, 1999.
47.
D. Schötzau, Mixed finite element methods for stationary incompressible magneto--hydrodynamics, Numer. Math., 96 (2004), pp. 771--800, https://doi.org/10.1007/s00211-003-0487-4.
48.
L. R. Scott and M. Vogelius, Conforming Finite Element Methods for Incompressible and Nearly Incompressible Continua, in Large Scale Computations in Fluid Mechanics, Vol. 22 (Part 2), American Mathematical Society, Providence, RI, 1985, pp. 221--244.
49.
J. Shadid, R. Pawlowski, J. Banks, L. Chacón, P. Lin, and R. Tuminaro, Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods, J. Comput. Phys., 229 (2010), pp. 7649--7671, https://doi.org/10.1016/j.jcp.2010.06.018.
50.
J. Shadid, R. Pawlowski, E. Cyr, R. Tuminaro, L. Chacón, and P. Weber, Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton\textendashKrylov-AMG, Comput. Methods Appl. Mech. Engrg., 304 (2016), pp. 1--25, https://doi.org/10.1016/j.cma.2016.01.019.
51.
B. S. Southworth, A. A. Sivas, and S. Rhebergen, On fixed-point, Krylov, and 2 x 2 block preconditioners for nonsymmetric problems, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 871--900, https://doi.org/10.1137/19m1298317.
52.
M. Wathen and C. Greif, A scalable approximate inverse block preconditioner for an incompressible magnetohydrodynamics model problem, SIAM J. Sci. Comput., 42 (2020), pp. B57--B79, https://doi.org/10.1137/19m1255409.
53.
M. Wathen, C. Greif, and D. Schötzau, Preconditioners for mixed finite element discretizations of incompressible MHD equations, SIAM J. Sci. Comput., 39 (2017), pp. A2993--A3013, https://doi.org/10.1137/16m1098991.
54.
S. Wu and J. Xu, Simplex-averaged finite element methods for $H({grad})$, $H({curl})$, and $H({div})$ convection-diffusion problems, SIAM J. Numer. Anal., 58 (2020), pp. 884--906, https://doi.org/10.1137/18m1227196.
55.
S. Wu and L. T. Zikatanov, On the Unisolvence for the Quasi-polynomial Spaces of Differential Forms, preprint, https://arxiv.org/abs/2003.14278 (2020).
56.
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), pp. 581--613, https://doi.org/10.1137/1034116.
57.
Software Used in `An Augmented Lagrangian Preconditioner for the Magnetohydrodynamics Equations at High Reynolds Number,' https://doi.org/10.5281/zenodo.5879212 (2022).
58.
S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comput., 74 (2005), pp. 543--555, https://doi.org/10.1090/s0025-5718-04-01711-9.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B1018 - B1044
ISSN (online): 1095-7197

History

Submitted: 30 April 2021
Accepted: 6 June 2022
Published online: 15 August 2022

Keywords

  1. magnetohydrodynamics (MHD)
  2. multigrid
  3. augmented Lagrangian

MSC codes

  1. 65N55
  2. 65N30
  3. 65F10
  4. 65F08

Authors

Affiliations

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/L015811/1, EP/V001943/1, EP/R029423/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media