Abstract

This paper introduces a new extension of Riemannian elastic curve matching to a general class of geometric structures, which we call (weighted) shape graphs, that allows for shape registration with partial matching constraints and topological inconsistencies. Weighted shape graphs are the union of an arbitrary number of component curves in Euclidean space with potential connectivity constraints between some of their boundary points, together with a weight function defined on each component curve. The framework of higher-order invariant Sobolev metrics is particularly well suited for constructing notions of distances and geodesics between unparametrized curves. The main difficulty in adapting this framework to the setting of shape graphs is the absence of topological consistency, which typically results in an inadequate search for an exact matching between two shape graphs. We overcome this hurdle by defining an inexact variational formulation of the matching problem between (weighted) shape graphs of any underlying topology, relying on the convenient measure representation given by varifolds to relax the exact matching constraint. We then prove the existence of minimizers to this variational problem when we choose Sobolev metrics of sufficient regularity and a total variation (TV) regularization on the weight function. We propose a numerical optimization approach which adapts the smoothed fast iterative shrinkage-thresholding algorithm (SFISTA) to deal with $TV$ norm minimization and allows us to reduce the matching problem to solving a sequence of smooth unconstrained minimization problems. We finally illustrate the capabilities of our new model through several examples showcasing its ability to tackle partially observed and topologically varying data.

Keywords

  1. elastic shape analysis
  2. shape graphs
  3. partial matching
  4. Sobolev metrics
  5. varifold
  6. total variation norm
  7. SFISTA algorithm

MSC codes

  1. 49J15
  2. 49Q20
  3. 53A04

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Amann, Compact embeddings of vector valued Sobolev and Besov spaces, Glas. Mate., 35 (2000), pp. 161--177.
2.
L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr. 254, Clarendon Press, Oxford, UK, 2000.
3.
P.-L. Antonsanti, J. Glaunès, T. Benseghir, V. Jugnon, and I. Kaltenmark, Partial Matching in the Space of Varifolds, preprint, arXiv:2103.12441, 2021.
4.
C. Atkin, The Hopf-Rinow theorem is false in infinite dimensions, Bull. Lond. Math. Soc., 7 (1975), pp. 261--266.
5.
M. Bauer, M. Bruveris, N. Charon, and J. Møller-Andersen, A relaxed approach for curve matching with elastic metrics, ESAIM Control Optim. Calc. Var., 25 (2019), 72.
6.
M. Bauer, M. Bruveris, P. Harms, and P. W. Michor, Vanishing geodesic distance for the Riemannian metric with geodesic equation the KDV-equation, Ann. Global Anal. Geom., 41 (2012), pp. 461--472.
7.
M. Bauer, M. Bruveris, P. Harms, and J. Møller-Andersen, A numerical framework for Sobolev metrics on the space of curves, SIAM J. Imaging Sci., 10 (2017), pp. 47--73.
8.
M. Bauer, M. Bruveris, P. Harms, and J. Møller-Andersen, H$2$metrics GitHub Repository, http://www.github.com/h2metrics/h2metrics, 2018.
9.
M. Bauer, M. Bruveris, and P. W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vision, 50 (2014), pp. 60--97.
10.
M. Bauer, C. Maor, and P. W. Michor, Sobolev Metrics on Spaces of Manifold Valued Curves, preprint, arXiv:2007.13315, 2020.
11.
A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and R. Kimmel, Partial similarity of objects, or how to compare a centaur to a horse, Int. J. Comput. Vis., 84 (2009), pp. 163--183.
12.
M. Bruveris, Completeness properties of Sobolev metrics on the space of curves, J. Geom. Mech., 7 (2015), pp. 125--150.
13.
M. Bruveris, Optimal reparametrizations in the square root velocity framework, SIAM J. Math. Anal., 48 (2016), pp. 4335--4354.
14.
M. Bruveris, P. W. Michor, and D. Mumford, Geodesic Completeness for Sobolev Metrics on the Space of Immersed Plane Curves, in Forum of Mathematics, Sigma, Vol. 2, Cambridge University Press, Cambridge, UK, 2014.
15.
M. Bruveris and J. Møller-Andersen, Completeness of Length-Weighted Sobolev Metrics on the Space of Curves, preprint, arXiv:1705.07976, (2017).
16.
A. Calissano, A. Feragen, and S. Vantini, Populations of Unlabeled Networks: Graph Space Geometry and Geodesic Principal Components, MOX Report, 2020.
17.
N. Charon, B. Charlier, J. Glaunès, P. Gori, and P. Roussillon, Fidelity metrics between curves and surfaces: Currents, varifolds, and normal cycles, in Riemannian Geometric Statistics in Medical Image Analysis, Elsevier, Amsterdam, 2020, pp. 441--477.
18.
N. Charon and A. Trouvé, The varifold representation of nonoriented shapes for diffeomorphic registration, SIAM J. Imaging Sci., 6 (2013), pp. 2547--2580.
19.
A. Duncan, E. Klassen, A. Srivastava, et al., Statistical shape analysis of simplified neuronal trees, Ann. Appl. Stat., 12 (2018), pp. 1385--1421.
20.
H. Edelsbrunner and J. Harer, Persistent homology-a survey, Contemp. Math., 453 (2008), pp. 257--282.
21.
A. Feragen, P. Lo, M. de Bruijne, M. Nielsen, and F. Lauze, Toward a theory of statistical tree-shape analysis, IEEE Trans. Pattern Analysis Machine Intelligence, 35 (2012), pp. 2008--2021.
22.
A. Feragen and T. Nye, Statistics on stratified spaces, in Riemannian Geometric Statistics in Medical Image Analysis, Elsevier, Amsterdam, 2020, pp. 299--342.
23.
J. Glaunès, A. Qiu, M. I. Miller, and L. Younes, Large deformation diffeomorphic metric curve mapping, Int. J. Comput. Vis., 80 (2008), p. 317.
24.
X. Guo, A. B. Bal, T. Needham, and A. Srivastava, Statistical Shape Analysis of Brain Arterial Networks (BAN), preprint, arXiv:2007.04793, 2020.
25.
X. Guo and A. Srivastava, Representations, metrics and statistics for shape analysis of elastic graphs, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 832--833.
26.
E. Hartman, Y. Sukurdeep, N. Charon, E. Klassen, and M. Bauer, Supervised Deep Learning of Elastic SRV Distances on the Shape Space of Curves, preprint, arXiv:2101.04929, 2021.
27.
H.-W. Hsieh and N. Charon, Metrics, quantization and registration in varifold spaces, Found. Comput. Math., 21 (2021), pp. 1--45.
28.
B. J. Jain and K. Obermayer, Structure spaces, J. Mach. Learn. Res., 10 (2009).
29.
I. Kaltenmark, B. Charlier, and N. Charon, A general framework for curve and surface comparison and registration with oriented varifolds, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3346--3355.
30.
I. Kaltenmark and A. Trouvé, Estimation of a growth development with partial diffeomorphic mappings, Quart. Appl. Math., 77 (2019), pp. 227--267.
31.
D. G. Kendall, A survey of the statistical theory of shape, Statist. Sci., 4 (1989), pp. 87--99.
32.
S. Lahiri, D. Robinson, and E. Klassen, Precise matching of PL curves in $R^N$ in the square root velocity framework, Geom. Imaging Comput., 2 (2015), pp. 133--186.
33.
A. Mennucci, A. Yezzi, and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves, Interfaces Free Bound., 10 (2008), pp. 423--445.
34.
P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Doc. Math., 10 (2005), pp. 217--245.
35.
P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), pp. 74--113.
36.
W. Mio, A. Srivastava, and S. Joshi, On shape of plane elastic curves, Int. J. Comput. Vis., 73 (2007), pp. 307--324.
37.
G. Nardi, G. Peyré, and F.-X. Vialard, Geodesics on shape spaces with bounded variation and Sobolev metrics, SIAM J. Imaging Sci., 9 (2016), pp. 238--274.
38.
T. Needham and S. Kurtek, Simplifying transforms for general elastic metrics on the space of plane curves, SIAM J. Imaging Sci., 13 (2020), pp. 445--473.
39.
E. Nunez and S. H. Joshi, Deep learning of warping functions for shape analysis, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 866--867.
40.
Y. Pan, G. E. Christensen, O. C. Durumeric, S. E. Gerard, J. M. Reinhardt, and G. D. Hugo, Current-and varifold-based registration of lung vessel and airway trees, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 126--133.
41.
D. T. Robinson, Functional Data Analysis and Partial Shape Matching in the Square Root Velocity Framework, Ph.D. dissertation, Florida State University, 2012.
42.
E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and D. Cremers, Partial functional correspondence, Computer Graphics Forum, 36 (2017), pp. 222--236.
43.
A. Srivastava, X. Guo, and H. Laga, Advances in geometrical analysis of topologically-varying shapes, in Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops, IEEE, 2020, pp. 1--4.
44.
A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn, Shape analysis of elastic curves in Euclidean spaces, IEEE Trans. Pattern Analysis Machine Intelligence, 33 (2010), pp. 1415--1428.
45.
A. Srivastava and E. P. Klassen, Functional and Shape Data Analysis, Vol. 1, Springer, New York, 2016.
46.
Y. Sukurdeep, M. Bauer, and N. Charon, An inexact matching approach for the comparison of plane curves with general elastic metrics, in Proceedings of the 53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 512--516.
47.
Z. Tan, Y. C. Eldar, A. Beck, and A. Nehorai, Smoothing and decomposition for analysis sparse recovery, IEEE Trans. Signal Process., 62 (2014), pp. 1762--1774.
48.
R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp. 146--160.
49.
A. Trouvé and L. Younes, Diffeomorphic matching problems in one dimension: Designing and minimizing matching functionals, in European Conference on Computer Vision, Springer, New York, 2000, pp. 573--587.
50.
G. Wang, H. Laga, J. Jia, S. J. Miklavcic, and A. Srivastava, Statistical analysis and modeling of the geometry and topology of plant roots, J. Theoret. Biol., 486 (2020), 110108.
51.
K. Wang, Y. Yan, and M. Diaz, Efficient clustering for stretched mixtures: Landscape and optimality, Advances in Neural Information Processing Systems 33, 2020.
52.
L. Younes, Computable elastic distances between shapes, SIAM J. Appl. Math., 58 (1998), pp. 565--586.
53.
L. Younes, Shapes and Diffeomorphisms, Appl. Math. Sci. 171, Springer, New York, 2010.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 261 - 292
ISSN (online): 1936-4954

History

Submitted: 10 May 2021
Accepted: 4 November 2021
Published online: 14 March 2022

Keywords

  1. elastic shape analysis
  2. shape graphs
  3. partial matching
  4. Sobolev metrics
  5. varifold
  6. total variation norm
  7. SFISTA algorithm

MSC codes

  1. 49J15
  2. 49Q20
  3. 53A04

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : 1945224, 1953267, 1953244, 1912037

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media