Abstract

When expressed in Lagrangian variables, the equations of motion for compressible (barotropic) fluids have the structure of a classical Hamiltonian system in which the potential energy is given by the internal energy of the fluid. The dissipative counterpart of such a system coincides with the porous medium equation, which can be cast in the form of a gradient flow for the same internal energy. Motivated by these related variational structures, we propose a particle method for both problems in which the internal energy is replaced by its Moreau--Yosida regularization in the $L^2$ sense, which can be efficiently computed as a semidiscrete optimal transport problem. Using a modulated energy argument which exploits the convexity of the problem in Eulerian variables, we prove quantitative convergence estimates towards smooth solutions. We verify such estimates by means of several numerical tests.

Keywords

  1. barotropic Euler equations
  2. porous medium equation
  3. Lagrangian discretizations
  4. optimal transport

MSC codes

  1. 35L65
  2. 65M12
  3. 65M50
  4. 76M28
  5. 76M30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), pp. 319--361.
2.
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), pp. 375--417.
3.
Y. Brenier, Derivation of the Euler equations from a caricature of Coulomb interaction, Comm. Math. Phys., 212 (2000), pp. 93--104.
4.
T. F. Buttke, Velicity methods: Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flow, in Vortex Flows and Related Numerical Methods, Springer, Dordrecht, Netherland, 1993, pp. 39--57.
5.
J. A. Carrillo, K. Craig, and F. S. Patacchini, A blob method for diffusion, Calc. Var. Partial Differential Equations, 58 (2019), pp. 1--53.
6.
J. A. Carrillo, D. Matthes, and M.-T. Wolfram, Lagrangian schemes for Wasserstein gradient flows, in Geometric Partial Differential Equations - Part II, A. Bonito and R. H. Nochetto, eds., of Handb. Numer. Anal. 22, Elsevier, 2021, pp. 271--311, https://doi.org/10.1016/bs.hna.2020.10.002.
7.
F. Cavalletti, M. Sedjro, and M. Westdickenberg, A variational time discretization for the compressible Euler equations, Trans. Amer. Math. Soc., 371 (2019), pp. 5083--5155.
8.
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Vol. 3, Springer, Berlin, 2005.
9.
L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Curr. Dev. Math., 1997 (1997), pp. 65--126.
10.
J. H. M. Evers, I. A. Zisis, B. J. van der Linden, and M. H. Duong, From continuum mechanics to SPH particle systems and back: Systematic derivation and convergence, ZAMM Z. Angew. Math. Mech., 98 (2018), pp. 106--133.
11.
C. Fefferman, Extension of $C^{m,\omega}$-smooth functions by linear operators, Rev. Mat. Iberoam., 25 (2009), pp. 1--48.
12.
T. Franz and H. Wendland, Convergence of the smoothed particle hydrodynamics method for a specific barotropic fluid flow: Constructive kernel theory, SIAM J. Math. Anal., 50 (2018), pp. 4752--4784.
13.
T. O. Gallouët and Q. Mérigot, A Lagrangian scheme à la Brenier for the incompressible Euler equations, Found. Comput. Math., 18 (2018), pp. 835--865.
14.
W. Gangbo and M. Westdickenberg, Optimal transport for the system of isentropic Euler equations, Comm. Partial Differential Equations, 34 (2009), pp. 1041--1073.
15.
J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., 223 (2017), pp. 1427--1484.
16.
E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Ser. Comput. Math. 31, Springer, Berlin, 2006.
17.
R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker--Planck equation, SIAM j. Math. Anal., 29 (1998), pp. 1--17.
18.
B. Khesin, G. Misiolek, and K. Modin, Geometric hydrodynamics via Madelung transform, Proc. Nat. Acad. Sci. USA, 115 (2018), pp. 6165--6170.
19.
J. Kitagawa, Q. Mérigot, and B. Thibert, Convergence of a newton algorithm for semi-discrete optimal transport, J. Eur. Math. Soc. (JEMS), 21 (2019), pp. 2603--2651.
20.
B. Kloeckner, Approximation by finitely supported measures, ESAIM Control. Optim. Calc. Var., 18 (2012), pp. 343--359.
21.
C. Lattanzio and A. E. Tzavaras, Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45 (2013), pp. 1563--1584.
22.
C. Lattanzio and A. E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Comm. Partial Differential Equations, 42 (2017), pp. 261--290.
23.
H. Leclerc, Q. Mérigot, F. Santambrogio, and F. Stra, Lagrangian discretization of crowd motion and linear diffusion, SIAM J. Numer. Anal., 58 (2020), pp. 2093--2118.
24.
S. J. Lind, B. D. Rogers, and P. K. Stansby, Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling, Proc. A, 476 (2020), 20190801.
25.
Q. Mérigot and J.-M. Mirebeau, Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport, SIAM J. Numer. Anal., 54 (2016), pp. 3465--3492.
26.
J. J. Monaghan, Smoothed particle hydrodynamics, Rep. Progr. Phys., 68 (2005), p. 1703.
27.
F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), pp. 101--174, https://doi.org/10.1081/PDE-100002243.
28.
G. Russo, On the impulse formulation of the Euler equations, in Proceedings of the IX International Conference on Waves and Stability in Continuous Media, Rend. Circ. Mat. Palermo, Suppl, Vol. 57, 1998, pp. 447--542.
29.
F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkäuser, Cham, Switzerland, 2015.
30.
C. Sarrazin, Lagrangian Discretization of Variational Mean Field Games, preprint, arXiv:2010.11519, 2020.
31.
M. Westdickenberg and J. Wilkening, Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations, ESAIM Math. Model. Numer. Anal., 44 (2010), pp. 133--166.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 2990 - 3018
ISSN (online): 1095-7154

History

Submitted: 28 May 2021
Accepted: 16 December 2021
Published online: 16 May 2022

Keywords

  1. barotropic Euler equations
  2. porous medium equation
  3. Lagrangian discretizations
  4. optimal transport

MSC codes

  1. 35L65
  2. 65M12
  3. 65M50
  4. 76M28
  5. 76M30

Authors

Affiliations

Funding Information

LabEx LMH
Agence Nationale de la Recherche https://doi.org/10.13039/501100001665 : ANR-16-CE40-0014
Commissariat Général à l'Investissement https://doi.org/10.13039/501100006072 : ANR-11-LABX-0056-LMH

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media