Abstract

The importance of myocardial perfusion at the outset of cardiac disease remains largely understudied. To address this topic we present a mathematical model that considers the systemic circulation, the coronary vessels, the myocardium, and the interactions among these components. The core of the whole model is the description of the myocardium as a multicompartment poromechanics system. A novel decomposition of the poroelastic Helmholtz potential involved in the poromechanics model allows for a quasi-incompressible model that adequately describes the physical interaction among all components in the porous medium. We further provide a rigorous mathematical analysis that gives guidelines for the choice of the Helmholtz potential. To reduce the computational cost of our integrated model we propose decoupling the deformation of the tissue and systemic circulation from the porous flow in the myocardium and coronary vessels, which allows us to apply the model also in combination with precomputed cardiac displacements, obtained form other models or medical imaging data. We test the methodology through the simulation of a heartbeat in healthy conditions that replicates the systolic impediment phenomenon, which is particularly challenging to capture as it arises from the interaction of several parts of the model.

Keywords

  1. cardiac perfusion
  2. nonlinear poromechanics
  3. constitutive modeling

MSC codes

  1. 92C10
  2. 68U20
  3. 74F10

Formats available

You can view the full content in the following formats:

References

1.
D. Ambrosi, G. Arioli, F. Nobile, and A. Quarteroni, Electromechanical coupling in cardiac dynamics: The active strain approach, SIAM J. Appl. Math., 71 (2011), pp. 605--621.
2.
D. Algranati, G. S. Kassab, and Y. Lanir, Mechanisms of myocardium-coronary vessel interaction, Amer. J. Physiology, 298 (2010), pp. H861--H873.
3.
D. Algranati, G. S. Kassab, and Y. Lanir, Mechanisms of myocardium-coronary vessel interaction, Amer. J. Physiology, 298 (2010), pp. H861--H873.
4.
P. Bruinsma, T. Arts, J. Dankelman, and J. A. E. Spaan, Model of the coronary circulation based on pressure dependence of coronary resistance and compliance, Basic Res. Cardiology, 83 (1988), pp. 510--524.
5.
D. A. Beard and J. B. Bassingthwaighte, The fractal nature of myocardial blood flow emerges from a whole-organ model of arterial network, J. Vascular Res., 37 (2000), pp. 282--296.
6.
J. D. Bayer, R. C. Blake, G. Plank, and N. A. Trayanova, A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models, Ann. Biomed. Eng., 40 (2012), pp. 2243--2254.
7.
B. Burtschell, D. Chapelle, and P. Moireau, Effective and energy-preserving time discretization for a general nonlinear poromechanical formulation, Comput. Struct., 182 (2017), pp. 313--324.
8.
P. J. Blanco and R. A. Feijóo, A $3$D-$1$D-$0$D computational model for the entire cardiovascular system, Comput. Method. Hemodyn., 59 (2010), pp. 5887--5911.
9.
O. K. Baskurt and H. J. Meiselman, Blood Rheology and Hemodynamics, Semin. Thromb. Hemost., 29 (2003), pp. 435--450.
10.
R. M. Bowen, Incompressible porous media models by use of the theory of mixtures, Internat. J. Engrg. Sci., 18 (1980), pp. 1129--1148.
11.
R. M. Bowen, Compressible porous media models by use of the theory of mixtures, Internat. J. Engrg. Sci., 20 (1982), pp. 697--735.
12.
S. Campbell, Singular Systems of Differential Equations, Vol. 1, Pitman, London, 1980.
13.
F. S. Costabal, F. A. Concha, D. E. Hurtado, and E. Kuhl, The importance of mechano-electrical feedback and inertia in cardiac electromechanics, Comput. Methods Appl. Mech. Engrg., 320 (2017), pp. 352--368.
14.
W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial optimization, Oberwolfach Rep., 5 (2009), pp. 2875--2942.
15.
D. Chapelle, J. F. Gerbeau, J. Sainte-Marie, and I. E. Vignon-Clementel, A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Comput. Mech., 46 (2010), pp. 91--101.
16.
A. N. Cookson, J. J. Lee, C. Michler, R. Chabiniok, E. Hyde, D. A. Nordsletten, M. Sinclair, M. Siebes, and N. P. Smith, A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics, J. Biomech., 45 (2012), pp. 850--855.
17.
D. Chapelle and P. Moireau, General coupling of porous flows and hyperelastic formulations---From thermodynamics principles to energy balance and compatible time schemes, Eur. J. Mech. B Fluids, 46 (2014), pp. 82--96.
18.
O. Coussy, Poromechanics, John Wiley & Sons, New York, 2004.
19.
R. Chabiniok, V. Y. Wang, M. Hadjicharalambous, L. Asner, J. Lee, M. Sermesant, E. Kuhl, A. A. Young, P. Moireau, M. P. Nash, D. Chapelle, and D. A. Nordsletten, Multiphysics and multiscale modelling, data--model fusion and integration of organ physiology in the clinic: Ventricular cardiac mechanics, Interface Focus, 6 (2016).
20.
P. de Buhan, X. Chateau, and L. Dormieux, The constitutive equations of finite strain poroelasticity in the light of a micro-macro approach, Eur. J. Mech. A Solids, 17 (1998), pp. 909--921.
21.
S. Di Gregorio, M. Fedele, G. Pontone, A. F. Corno, P. Zunino, C. Vergara, and A. Quarteroni, A computational model applied to myocardial perfusion in the human heart: From large coronaries to microvasculature, J. Comput. Phys., 424 (2021), 109836.
22.
L. Dede, A. Gerbi, and A. Quarteroni, Segregated algorithms for the numerical simulation of cardiac electromechanics in the left human ventricle, in The Mathematics of Mechanobiology, Springer, New York, 2020, pp. 81--116.
23.
J. T. Dodge, Jr., B. G. Brown, E. L. Bolson, and H. T. Dodge, Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation, Circulation, 86 (1992), pp. 232--246.
24.
J. M. Downey and E. S. Kirk, Inhibition of coronary blood flow by a vascular waterfall mechanism, Circulation Res., 36 (1975), pp. 753--760.
25.
D. A. Fonseca, P. E. Antunes, and M. D. Cotrim, The morphology, physiology and pathophysiology of coronary microcirculation, in Microcirculation Revisited---From Molecules to Clinical Practice, InTech Open, London, 2016, pp. 15--47.
26.
P. C. Franzone, L. F. Pavarino, and S. Scacchi, Mathematical Cardiac Electrophysiology, MS&A. Model. Simul. Appl. 13, Springer, New York, 2014.
27.
L. Formaggia, A. Quarteroni, and A. Veneziani, Multiscale models of the vascular system, in Cardiovascular Mathematics, Springer, New York, 2009, pp. 395--446.
28.
A. Gerbi, L. Dedé, and A. Quarteroni, A monolithic algorithm for the simulation of cardiac electromechanics in the human left ventricle, Math. in Engrg., 1 (2019), pp. 1--37.
29.
J. M. Guccione, A. D. McCulloch, and L. K. Waldman, Passive material properties of intact ventricular myocardium determined from a cylindrical model, J. Biomech. Eng., 113 (1991), pp. 42--55.
30.
C. Guiot, P. G. Pianta, C. Cancelli, and T. J. Pedley, Prediction of coronary blood flow with a numerical model based on collapsible tube dynamics, Amer. J. Physiology, 258 (1990), pp. H1606--H1614.
31.
J. M. Huyghe, T. Arts, D. H. van Campen, and R. S. Reneman, Porous medium finite element model of the beating left ventricle, Amer. J. Physiology, 262 (1992), pp. H1256--H1267.
32.
M. C. Hsu and Y. Bazilevs, Blood vessel tissue prestress modeling for vascular fluid--structure interaction simulation, Finite Elem. Anal. Des., 47 (2011), pp. 593--599.
33.
M. Hirschvogel, M. Bassilious, L. Jagschies, S. M. Wildhirt, and M. W. Gee, A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics, Int. J. Numer. Methods Biomed. Eng., 33 (2017), e2842.
34.
M. R. Hoenig, C. Bianchi, A. Rosenzweig, and F. W. Sellke, The cardiac microvasculature in hypertension, cardiac hypertrophy and diastolic heart failure, Current Vascular Pharm., 6 (2008), pp. 292--300.
35.
Y. Huo, B. Kaimovitz, Y. Lanir, T. Wischgoll, J. I. E. Hoffman, and G. S. Kassab, Biophysical model of the spatial heterogeneity of myocardial flow, Biophys. J., 96 (2009), pp. 4035--4043.
36.
J. I. Hoffman and J. A. Spaan, Pressure-flow relations in coronary circulation, Physiolog. Rev., 70 (1990), pp. 331--390.
37.
R. Izzo, D. Steinman, S. Manini, and L. Antiga, The vascular modeling toolkit: A Python library for the analysis of tubular structures in medical images, J. Open Source Softw., 3 (2018), 745.
38.
J. Y. Kresh, M. A. Cobanoglu, and S. K. Brockman, The intramyocardial pressure: A parameter of heart contractility, J. Heart Transplant., 4 (1985), pp. 241--246.
39.
A. Karimi, M. Navidbakhsh, A. Shojaei, and S. Faghihi, Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries, Mater. Sci. Eng. C, 33 (2013), pp. 2550--2554.
40.
A. Karimi, T. Sera, S. Kudo, and M. Navidbakhsh, Experimental verification of the healthy and atherosclerotic coronary arteries incompressibility via digital image correlation, Artery Res., 16 (2016), pp. 1--7.
41.
H. J. Kim, I. E. Vignon-Clementel, J. S. Coogan, C. A. Figueroa, K. E. Jansen, and C. A. Taylor, Patient-specific modeling of blood flow and pressure in human coronary arteries, Ann. Biomed. Eng., 38 (2010), pp. 3195--3209.
42.
G. Liew, P. Mitchell, E. Rochtchina, T. Y. Wong, W. Hsu, M. L. Lee, A. Wainwright, and J. J. Wang, Fractal analysis of retinal microvasculature and coronary heart disease mortality, Eur. Heart J., 32 (2010), pp. 422--429.
43.
J. Lee, S. Niederer, D. Nordsletten, I. Le Grice, B. Smail, D. Kay, and N.P. Smith, Coupling contraction, excitation, ventricular and coronary blood flow across scale and physics in the heart, Philos. Trans. A, 367 (2009), pp. 2311--2331.
44.
J. Lee and N. P. Smith, The multi-scale modelling of coronary blood flow, Ann. Biomed. Eng., 40 (2012), pp. 2399--2413.
45.
C. Michler, A. N. Cookson, R. Chabiniok, E. Hyde, J. Lee, M. Sinclair, T. Sochi, A. Goyal, G. Vigueras, and D. A. Nordsletten, A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model, Int. J. Numer. Methods Biomed. Eng., 29 (2013), pp. 217--232.
46.
S. Müller, T. Qi, and B. S. Yan, On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré Anal. Non Linéaire 11, Elsevier, New York, 1994, pp. 217--243.
47.
R. Namani, G. S. Kassab, and Y. Lanir, Morphometric reconstruction of coronary vasculature incorporating uniformity of flow dispersion, Front. Physiology, 9 (2018), 1069.
48.
R. Namani, L. C. Lee, Y. Lanir, B. Kaimovitz, S. M. Shavik, and G. S. Kassab, Effects of myocardial function and systemic circulation on regional coronary perfusion, J. Appl. Physiology, 128 (2020), pp. 1106--1122.
49.
T. E. Oliphant, A Guide to NumPy, vol. 1, Trelgol Publishing, 2006.
50.
M. R. Pfaller, J. M. Hörmann, M. Weigl, A. Nagler, R. Chabiniok, C. Bertoglio, and W. A. Wall, The importance of the pericardium for cardiac biomechanics: From physiology to computational modeling, Biomech. Model. Mechanobiol., 18 (2019), pp. 503--529.
51.
R. Perry, M. X. Joseph, D. P. Chew, P. E. Aylward, and C. G. De Pasquale, Coronary artery wall thickness of the left anterior descending artery using high resolution transthoracic echocardiography---Normal range of values, Echocardiography, 30 (2013), pp. 759--764.
52.
L. Papamanolis, H. J. Kim, C. Jaquet, M. Sinclair, M. Schaap, I. Danad, P. van Diemen, P. Knaapen, L. Najman, H. Talbot, C. A. Taylor, and I. Vignon-Clementel, Myocardial perfusion simulation for coronary artery disease: A coupled patient-specific multiscale model, Ann. Biomed. Eng., 49 (2021), pp. 1432--1447.
53.
R. Piersanti, F. Regazzoni, M. Salvador, A. F. Corno, L. Dede, C. Vergara, and A. Quarteroni, 3D-0D Closed-Loop Model for the Simulation of Cardiac Biventricular Electromechanics, preprint, arXiv:2108.01907, 2021.
54.
A. Quarteroni, L. Dede', A. Manzoni, and C. Vergara, Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approximation, Clinical Applications, Cambridge Monogr. Appl. Comput. Math. 33, Cambridge University Press, Cambridge, 2019.
55.
A. M. Quarteroni, T. Lassila, S. Rossi, and R. Ruiz-Baier, Integrated heart--coupling multiscale and multiphysics models for the simulation of the cardiac function, Comput. Methods Appl. Mech. Engrg., 314 (2017), pp. 345--407.
56.
A. Quarteroni, S. Ragni, and A. Veneziani, Coupling between lumped and distributed models for blood flow problems, Comput. Vis. Sci., 4 (2001), pp. 111--124.
57.
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math. 23, Springer, New York, 2008.
58.
A. Quarteroni, A. Veneziani, and C. Vergara, Geometric multiscale modeling of the cardiovascular system, between theory and practice, Comput. Methods Appl. Mech. Engrg., 302 (2016), pp. 193--252.
59.
F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dede, and A. Quarteroni, A Cardiac Electromechanics Model Coupled with a Lumped Parameters Model for Closed-Loop Blood Circulation. Part I: Model Derivation, arXiv:2011:15040, 2020.
60.
F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dede, and A. Quarteroni, A Cardiac Electromechanics Model Coupled with a Lumped Parameters Model for Closed-Loop Blood Circulation. Part II: Numerical Approximation, arXiv:2011:15051, 2020.
61.
J. A. Spaan, N. P. Breuls, and J. D. Laird, Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog, Circulation Res., 49 (1981), pp. 584--593.
62.
N. P. Smith, A computational study of the interaction between coronary blood flow and myocardial mechanics, Physiological Measur., 25 (2004), 863.
63.
T. P. Usyk, I. J. LeGrice, and A. D. McCulloch, Computational model of three-dimensional cardiac electromechanics, Comput. Vis. Sci., 4 (2002), pp. 249--257.
64.
J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford University Press, Oxford, 2007.
65.
M. A Vis, P. Sipkema, and N. Westerhof, Modeling pressure-flow relations in cardiac muscle in diastole and systole, Amer. J. Physiology, 272 (1997), pp. H1516--H1526.
66.
A. T. Vuong, L. Yoshihara, and W. A. Wall, A general approach for modeling interacting flow through porous media under finite deformations, Comput. Methods Appl. Mech. Engrg., 283 (2015), pp. 1240--1259.
67.
N. Westerhof, F. Bosman, C. J. De Vries, and A. Noordergraaf, Analog studies of the human systemic arterial tree, J. Biomech., 2 (1969), pp. 121--143.
68.
S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy's law, Transp. Porous Media, 1 (1986), pp. 3--25.
69.
N. Westerhof, J. W. Lankhaar, and B. E. Westerhof, The arterial Windkessel, Med. Biol. Eng. Comput., 47 (2009), pp. 131--141.
70.
H. F. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49 (2011), pp. 1715--1735.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 1167 - 1193
ISSN (online): 1095-712X

History

Submitted: 9 June 2021
Accepted: 28 February 2022
Published online: 21 July 2022

Keywords

  1. cardiac perfusion
  2. nonlinear poromechanics
  3. constitutive modeling

MSC codes

  1. 92C10
  2. 68U20
  3. 74F10

Authors

Affiliations

Funding Information

PRIN : 2017AXL54F_003

Funding Information

H2020 European Research Council https://doi.org/10.13039/100010663 : 740132

Funding Information

H2020 European Research Council https://doi.org/10.13039/100010663

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media