Abstract.

We introduce an ensemble Markov chain Monte Carlo approach to sampling from a probability density with known likelihood. This method upgrades an underlying Markov chain by allowing an ensemble of such chains to interact via a process in which one chain’s state is cloned as another’s is deleted. This effective teleportation of states can overcome issues of metastability in the underlying chain, as the scheme enjoys rapid mixing once the modes of the target density have been populated. We derive a mean-field limit for the evolution of the ensemble. We analyze the global and local convergence of this mean-field limit, showing asymptotic convergence independent of the spectral gap of the underlying Markov chain, and moreover we interpret the limiting evolution as a gradient flow. We explain how interaction can be applied selectively to a subset of state variables in order to maintain advantage on very high-dimensional problems. Finally, we present the application of our methodology to Bayesian hyperparameter estimation for Gaussian process regression.

Keywords

  1. Markov chain Monte Carlo
  2. interacting particles
  3. mean-field limits

MSC codes

  1. 65C05
  2. 62F15
  3. 60J85

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. S. Abbot, R. J. Webber, S. Hadden, D. Seligman, and J. Weare, Rare event sampling improves mercury instability statistics, Astrophys. J., 923 (2021), 236, https://doi.org/10.3847/1538-4357/ac2fa8.
2.
L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser Verlag, Basel, 2005.
3.
T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley Interscience, Hoboken, NJ, 2003.
4.
C. Andrieu, A. Jasra, A. Doucet, and P. Del Moral, Non-linear Markov chain Monte Carlo, in Conference Oxford sur les méthodes de Monte Carlo séquentielles, ESAIM Proc. 19, EDP Sci., Les Ulis, France, 2007, pp. 79–84, https://doi.org/10.1051/proc:071911.
5.
C. J. T. Braak, A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces, Stat. Comput., 16 (2006), pp. 239–249.
6.
N. Chopin, T. Lelièvre and G. Stoltz, Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors, Stat. Comput., 22 (2012), pp. 897–916.
7.
N. Chopin and O. Papaspiliopoulos, An Introduction to Sequential Monte Carlo, Springer Series in Statistics, Springer, Cham, 2020.
8.
J. A. Christen and C. Fox, A general purpose sampling algorithm for continuous distributions (the t-walk), Bayesian Anal., 5 (2010), pp. 263–282.
9.
A. R. Dinner, E. H. Thiede, B. Van Koten, and J. Weare, Stratification as a general variance reduction method for Markov chain Monte Carlo, SIAM/ASA J. Uncertain. Quantif., 8 (2020), pp. 1139–1188, https://doi.org/10.1137/18M122964X.
10.
D. J. Earl and M. W. Deem, Parallel tempering: Theory, applications, and new perspectives, Phys. Chem. Chem. Phys., 7 (2005), pp. 3910–3916, https://doi.org/10.1039/B509983H.
11.
D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, emcee: The MCMC Hammer. Publ. Astronom. Soc. Pacific, 125 (2013), pp. 306–312, https://doi.org/10.1086/670067 (accessed May 4, 2021).
12.
A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart, Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 412–441, https://doi.org/10.1137/19M1251655.
13.
A. Garbuno-Inigo, N. Nüsken, and S. Reich, Affine invariant interacting Langevin dynamics for Bayesian inference, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 1633–1658, https://doi.org/10.1137/19M1304891.
14.
W. R. Gilks, G. O. Roberts, and E. I. George, Adaptive direction sampling, J. R. Stat. Soc. Ser. D (Statistician), 43 (1994), pp. 179–189, http://www.jstor.org/stable/2348942.
15.
J. Goodman and J. Weare, Ensemble samplers with affine invariance, Commun. Appl. Math. Comput. Sci., 5 (2010), pp. 65–80.
16.
P. Greengard, An Ensemblized Metropolized Langevin Sampler, Master’s thesis, NYU, New York, NY, 2015.
17.
B. Helffer, M. Klein, and F. Nier, Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach, Mat. Contemp., 26 (2004), pp. 41–85.
18.
B. Leimkuhler and C. Matthews, Molecular Dynamics: With Deterministic and Stochastic Numerical Methods, Interdiscip. Appl. Math. 39, Springer, Cham, 2015.
19.
B. Leimkuhler, C. Matthews, and J. Weare, Ensemble preconditioning for Markov chain Monte Carlo simulation, Stat. Comput., 28 (2018), pp. 277–290, https://doi.org/10.1007/s11222-017-9730-1.
20.
T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numer., 25 (2016), pp. 681–880, https://doi.org/10.1017/S0962492916000039.
21.
D. A. Levin and Y. Peres, Markov Chains and Mixing Times, 2nd ed., AMS, Providence, RI, 2017, https://doi.org/10.1090/mbk/107.
22.
F. Liese and I. Vajda, On divergences and informations in statistics and information theory, IEEE Trans. Inform. Theory, 52 (2006), pp. 4394–4412.
23.
J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer Series in Statistics, Springer-Verlag, New York, 2001.
24.
Y. Lu, J. Lu, and J. Nolen, Accelerating Langevin Sampling with Birth-Death, preprint, https://arxiv.org/abs/1905.09863, 2019.
25.
C. Matthews, J. Weare, A. Kravtsov, and E. Jennings, Umbrella sampling: A powerful method to sample tails of distributions, Mon. Notices Royal Astron. Soc., 480 (2018), pp. 4069–4079, https://doi.org/10.1093/mnras/sty2140.
26.
G. A. Pavliotis, A. M. Stuart, and U. Vaes, Derivative-Free Bayesian Inversion Using Multiscale Dynamics, preprint, https://arxiv.org/abs/2102.00540, 2021.
27.
J. Pidstrigach and S. Reich, Affine-Invariant Ensemble Transform Methods for Logistic Regression, preprint, https://arxiv.org/abs/2104.08061, 2021.
28.
G. Rotskoff, S. Jelassi, J. Bruna, and E. Vanden-Eijnden, Global Convergence of Neuron Birth-Death Dynamics, preprint, https://arxiv.org/abs/1902.01843, 2019.
29.
A. Sokal, Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms, Springer, Boston, MA, 1997, pp. 131–192, https://doi.org/10.1007/978-1-4899-0319-8_6.
30.
G. Teschl, Ordinary Differential Equations and Dynamical Systems, AMS, Providence, RI, 2012.
31.
R. J. Webber, D. Aristoff, and G. Simpson, A Splitting Method to Reduce MCMC Variance, preprint, https://arxiv.org/abs/2011.13899, 2020.
32.
Y. Yao, A. Vehtari and A. Gelman, Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors, preprint, https://arxiv.org/abs/2006.12335, 2020.
33.
J. Zuntz, M. Paterno, E. Jennings, D. Rudd, A. Manzotti, S. Dodelson, S. Bridle, S. Sehrish, and J. Kowalkowski, CosmoSIS: Modular cosmological parameter estimation, Astron. Comput., 12 (2015), pp. 45–59, https://doi.org/10.1016/j.ascom.2015.05.005.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 860 - 885
ISSN (online): 2166-2525

History

Submitted: 7 June 2021
Accepted: 8 February 2022
Published online: 29 July 2022

Keywords

  1. Markov chain Monte Carlo
  2. interacting particles
  3. mean-field limits

MSC codes

  1. 65C05
  2. 62F15
  3. 60J85

Authors

Affiliations

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 USA ([email protected], [email protected]).
Jonathan Weare
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 USA ([email protected], [email protected]).
Anna Zhang
Stuyvesant High School, New York, NY 10282 USA ([email protected]).

Funding Information

The work of the first author was supported by National Science Foundation award 1903031. The work of the second author was supported by the Advanced Scientific Computing Research Program within the DOE Office of Science through award DE-SC0020427.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media