Abstract.

We address the numerical solution of linear systems arising from the hybrid discretizations of second-order elliptic partial differential equations. Such discretizations hinge on a hybrid set of degrees of freedom (DoFs), respectively, defined in cells and faces, which naturally gives rise to a global hybrid system of linear equations. Assuming that the cell unknowns are only locally coupled, they can be efficiently eliminated from the system, leaving only face unknowns in the resulting Schur complement, which is also called the statically condensed matrix. We propose in this work an algebraic multigrid (AMG) preconditioner specifically targeting condensed systems corresponding to lowest-order discretizations (piecewise constant). Like traditional AMG methods, we retrieve geometric information on the coupling of the DoFs from algebraic data. However, as the condensed matrix only gives information on the faces, we use the uncondensed version to reconstruct the connectivity graph between elements and faces. An aggregation-based coarsening strategy mimicking a geometric coarsening or semicoarsening can then be set up to build coarse levels. Numerical experiments are performed on diffusion problems discretized by the hybrid high-order method at the lowest order. Our approach uses a K-cycle to precondition an outer flexible Krylov method. The results demonstrate similar performances, in most cases, compared to a standard AMG method and a notable improvement on anisotropic problems with Cartesian meshes.

Keywords

  1. algebraic multigrid
  2. hybrid methods
  3. static condensation

MSC codes

  1. 65N55
  2. 65N22
  3. 65F50
  4. 65F08

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, ESAIM Math. Model. Numer. Anal., 19 (1985), pp. 7–32, https://doi.org/10.1051/m2an/1985190100071.
2.
L. Beirão da Veiga, K. Lipnikov, and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems, Springer, Cham, 2014, https://doi.org/10.1007/978-3-319-02663-3.
3.
J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 553–581, https://doi.org/10.1051/m2an/2013104.
4.
D. Braess, Towards algebraic multigrid for elliptic problems of second order, Computing, 55 (1995), pp. 379–393, https://doi.org/10.1007/BF02238488.
5.
M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, Algebraic multigrid based on element interpolation (AMGe), SIAM J. Sci. Comput., 22 (2001), pp. 1570–1592, https://doi.org/10.1137/S1064827598344303.
6.
F. Brezzi, J. Douglas, and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), pp. 217–235, https://doi.org/10.1007/BF01389710.
7.
V. E. Bulgakov, Multi-level iterative technique and aggregation concept with semi-analytical preconditioning for solving boundary-value problems, Comm. Numer. Methods Engrg., 9 (1993), pp. 649–657, https://doi.org/10.1002/cnm.1640090804.
8.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
9.
B. Cockburn, O. Dubois, J. Gopalakrishnan, and S. Tan, Multigrid for an HDG method, IMA J. Numer. Anal., 34 (2014), pp. 1386–1425.
10.
B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365, https://doi.org/10.1137/070706616.
11.
E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proceedings of the 1969 24th National Conference, ACM’69, New York, NY, Association for Computing Machinery, 1969, pp. 157–172, https://doi.org/10.1145/800195.805928.
12.
D. A. Di Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes, MS&A Model. Simul. Appl. 19, Springer, Cham, 2020, https://doi.org/10.1007/978-3-030-37203-3.
13.
D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Meth. Appl. Mech. Engrg., 283 (2015), pp. 1–21, https://doi.org/10.1016/j.cma.2014.09.009.
14.
D. A. Di Pietro, A. Ern, and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Meth. Appl. Math., 14 (2014), pp. 461–472, https://doi.org/10.1515/cmam-2014-0018.
15.
D. A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde, and D. Ruiz, An h-multigrid method for hybrid high-order discretizations, SIAM J. Sci. Comput., 43 (2021), pp. S839–S861, https://doi.org/10.1137/20M1342471.
16.
D. A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde, and D. Ruiz, Towards robust, fast solutions of elliptic equations on complex domains through HHO discretizations and non-nested multigrid methods, Int. J. Numer. Methods Engrg., 122 (2021), pp. 6576–6595, https://doi.org/10.1002/nme.6803.
17.
J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math., 105 (2006), pp. 35–71, https://doi.org/10.1007/s00211-006-0034-1.
18.
J. Droniou, R. Eymard, T. Gallouët, and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci., 20 (2010), pp. 265–295, https://doi.org/10.1142/S0218202510004222.
19.
R. Eymard, T. Gallouët, and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), pp. 1009–1043, https://doi.org/10.1093/imanum/drn084.
20.
R. D. Falgout, An introduction to algebraic multigrid, Comput. Sci. Eng., 8 (2006), pp. 24–33, https://doi.org/10.1109/MCSE.2006.105.
21.
V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41 (2002), pp. 155–177, https://doi.org/10.1016/S0168-9274(01)00115-5.
22.
S. J. Thomas, S. Ananthan, S. Yellapantula, J. J. Hu, M. Lawson, and M. A. Sprague, A comparison of classical and aggregation-based algebraic multigrid preconditioners for high-fidelity simulation of wind turbine incompressible flows, SIAM J. Sci. Comput., 41 (2019), pp. S196–S219, https://doi.org/10.1137/18M1179018.
23.
M. Kronbichler and W. Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SIAM J. Sci. Comput., 40 (2018), pp. A3423–A3448, https://doi.org/10.1137/16M110455X.
24.
S. Muralikrishnan, T. Bui-Thanh, and J. N. Shadid, A multilevel approach for trace system in HDG discretizations, J. Comput. Phys., 407 (2020), 109240, https://doi.org/10.1016/j.jcp.2020.109240.
25.
A. C. Muresan and Y. Notay, Analysis of aggregation-based multigrid, SIAM J. Sci. Comput., 30 (2008), pp. 1082–1103, https://doi.org/10.1137/060678397.
26.
A. Napov and Y. Notay, An algebraic multigrid method with guaranteed convergence rate, SIAM J. Sci. Comput., 34 (2012), pp. A1079–A1109, https://doi.org/10.1137/100818509.
27.
Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444–1460, https://doi.org/10.1137/S1064827599362314.
28.
Y. Notay, An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal., 37 (2010), pp. 123–146.
29.
Y. Notay and A. Napov, A massively parallel solver for discrete Poisson-like problems, J. Comput. Phys., 281 (2015), pp. 237–250, https://doi.org/10.1016/j.jcp.2014.10.043.
30.
L. N. Olson and J. B. Schroder, Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems, J. Comput. Phys., 230 (2011), pp. 6959–6976.
31.
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes, eds., Springer, Berlin, 1977, pp. 292–315.
32.
J. Ruge and K. Stüben, Efficient Solution of Finite Difference and Finite Element Equations by Algebraic Multigrid (AMG), Gesellschaft für Mathematik und Datenverarbeitung, Sankt Augustin, Germany, 1984.
33.
J. W. Ruge and K. Stüben, 4. Algebraic multigrid, in Multigrid Methods, Front. Appl. Math., SIAM, Philadelphia, 1987, pp. 73–130, https://doi.org/10.1137/1.9781611971057.ch4.
34.
K. Stüben, A review of algebraic multigrid, in Numerical Analysis: Historical Developments in the 20th Century, C. Brezinski and L. Wuytack, eds., Elsevier, Amsterdam, 2001, pp. 331–359, https://doi.org/10.1016/B978-0-444-50617-7.50015-X.
35.
X. Tu and B. Wang, A BDDC algorithm for second-order elliptic problems with hybridizable discontinuous Galerkin discretizations, Electron. Trans. Numer. Anal., 45 (2016), pp. 354–370.
36.
P. Vaněk, Acceleration of convergence of a two-level algorithm by smoothing transfer operators, Appl. Math., 37 (1992), pp. 265–274, https://doi.org/10.21136/AM.1992.104509.
37.
P. Vaněk, Fast multigrid solver, Appl. Math., 40 (1995), pp. 1–20, https://doi.org/10.21136/AM.1995.134274.
38.
R. Wienands and C. W. Oosterlee, On three-grid Fourier analysis for multigrid, SIAM J. Sci. Comput., 23 (2001), pp. 651–671, https://doi.org/10.1137/S106482750037367X.
39.
T. Wildey, S. Muralikrishnan, and T. Bui-Thanh, Unified geometric multigrid algorithm for hybridized high-order finite element methods, SIAM J. Sci. Comput., 41 (2019), pp. S172–S195, https://doi.org/10.1137/18M1193505.
40.
O. C. Zienkiewicz, Displacement and equilibrium models in the finite element method by B. Fraeijs de Veubeke, chapter 9, pages 145–197 of Stress Analysis, edited by O. C. Zienkiewicz and G. S. Holister, published by John Wiley & Sons, 1965, Int. J. Numer. Methods Engrg., 52 (2001), pp. 287–342, https://doi.org/10.1002/nme.339.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: S329 - S350
ISSN (online): 1095-7197

History

Submitted: 28 June 2021
Accepted: 8 September 2022
Published ahead of print: 3 March 2023
Published online: 26 June 2023

Keywords

  1. algebraic multigrid
  2. hybrid methods
  3. static condensation

MSC codes

  1. 65N55
  2. 65N22
  3. 65F50
  4. 65F08

Authors

Affiliations

IMAG, University of Montpellier, CNRS, Montpellier, France.
EDF R&D, Paris-Saclay, France.
IMAG, University of Montpellier, CNRS, Montpellier, France; IRIT, Toulouse, France; CERFACS, Toulouse, France; and FAU, Erlangen-Nürnberg, Germany.
Ulrich Rüde
CERFACS, Toulouse, France, and FAU, Erlangen-Nürnberg, Germany.

Funding Information

Funding: This work was supported by ANR project Fast4HHO under contract ANR-17-CE23-0019.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.