Abstract

We present a novel approach to the parallelization of the parabolic fast multipole method for a space-time boundary element method for the heat equation. We exploit the special temporal structure of the involved operators to provide an efficient distributed parallelization with respect to time and with a one-directional communication pattern. On top, we apply a task-based shared memory parallelization and Single Instruction Multiple Data vectorization. In the numerical tests we observe high efficiencies of our parallelization approach.

Keywords

  1. boundary element method
  2. space-time
  3. heat equation
  4. FMM
  5. parallelization
  6. HPC

MSC codes

  1. 65M38
  2. 65Y05
  3. 35K05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
OpenMP Application Programming Interface, 2015, https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf, accessed August 29, 2018.
2.
M. Abduljabbar, M. Al Farhan, N. Al-Harthi, R. Chen, R. Yokota, H. Bagci, and D. Keyes, Extreme scale FMM-accelerated boundary integral equation solver for wave scattering, SIAM J. Sci. Comput., 41 (2019), pp. C245--C268, https://doi.org/10.1137/18M1173599.
3.
M. Abduljabbar, G. Markomanolis, H. Ibeid, R. Yokota, and D. Keyes, Communication reducing algorithms for distributed hierarchical N-body problems with boundary distributions, in High Performance Computing ISC High Performance 2017, Lecture Notes in Comput. Sci. 10266, Springer, Cham, 2017, pp. 79--96, https://doi.org/10.1007/978-3-319-58667-0_5.
4.
M. AbdulJabbar, R. Yokota, and D. Keyes, Asynchronous Execution of the Fast Multipole Method using Charm$++$, preprint, https://arxiv.org/abs/1405.7487, 2014.
5.
E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi, Task-based FMM for multicore architectures, SIAM J. Sci. Comput., 36 (2014), pp. C66-C93, https://doi.org/10.1137/130915662.
6.
E. Agullo, B. Bramas, O. Coulaud, M. Khannouz, and L. Stanisic, Task-based Fast Multipole Method for Clusters of Multicore Processors, Research Report RR-8970, Inria Bordeaux Sud-Ouest, October 2016.
7.
D. N. Arnold and P. J. Noon, Boundary integral equations of the first kind for the heat equation, in Boundary Elements IX, Vol. 3 (Stuttgart, 1987), C. Brebbia, W. Wendland, and G. Kuhn, eds., Comput. Mech., Southampton, UK, 1987, pp. 213--229.
8.
C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, StarPU: A unified platform for task scheduling on heterogeneous multicore architectures, CCPE - Concurrency and Computation: Practice and Experience, Special Issue: Euro-Par 2009, 23 (2011), pp. 187--198, https://doi.org/10.1002/cpe.1631.
9.
M. Costabel, Boundary integral operators for the heat equation, Integral Equ. Oper. Theory, 13 (1990), pp. 498--552, https://doi.org/10.1007/BF01210400.
10.
F. Cruz, M. Knepley, and L. Barba, PetFMM---A dynamically load-balancing parallel fast multipole library, Int. J. Numer. Methods. Eng., 85 (2011), pp. 403--428, https://doi.org/10.1002/nme.2972.
11.
S. Dohr, K. Niino, and O. Steinbach, Space-time boundary element methods for the heat equation, in Space-Time Methods: Applications to Partial Differential Equations, De Gruyter, Berlin, 2019, pp. 1--60, https://doi.org/10.1515/9783110548488-001.
12.
S. Dohr, J. Zapletal, G. Of, M. Merta, and M. Kravčenko, A parallel space-time boundary element method for the heat equation, Comput. Math. Appl., 78 (2019), pp. 2852--2866, https://doi.org/10.1016/j.camwa.2018.12.031.
13.
M. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems, SIAM J. Sci. Comput., 38 (2016), pp. A2173--A2208, https://doi.org/10.1137/15M1046605.
14.
G. Gantner and R. van Venetië, Adaptive space-time BEM for the heat equation, Comput. Math. Appl., 107 (2022), pp. 117--131, https://doi.org/10.1016/j.camwa.2021.12.022.
15.
L. Greengard and P. Lin, Spectral approximation of the free-space heat kernel, Appl. Comput. Harmon. Anal., 9 (2000), pp. 83--97, https://doi.org/10.1006/acha.2000.0310.
16.
L. Greengard and J. Strain, A fast algorithm for the evaluation of heat potentials, Comm. Pure Appl. Math., 43 (1990), pp. 949--963, https://doi.org/10.1002/cpa.3160430802.
17.
H. Harbrecht and J. Tausch, A fast sparse grid based space-time boundary element method for the nonstationary heat equation, Numer. Math., 140 (2018), pp. 239--264, https://doi.org/10.1007/s00211-018-0963-5.
18.
G. C. Hsiao and J. Saranen, Boundary integral solution of the two-dimensional heat equation, Math. Methods Appl. Sci., 16 (1993), pp. 87--114, https://doi.org/10.1002/mma.1670160203.
19.
U. Langer and O. Steinbach, eds., Space-Time Methods: Applications to Partial Differential Equations, Radon Ser. Comput. Appl. Math. 25, De Gruyter, Berlin, 2019, https://doi.org/10.1515/9783110548488.
20.
I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath, A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros, A massively parallel adaptive fast-multipole method on heterogeneous architectures, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC '09, Association for Computing Machinery, New York, 2009, 58, https://doi.org/10.1145/1654059.1654118.
21.
J.-L. Lions, Y. Maday, and G. Turinici, Résolution d'EDP par un schéma en temps “pararéel,” C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661--668, https://doi.org/10.1016/S0764-4442(00)01793-6.
22.
M. Merta, G. Of, R. Watschinger, and J. Zapletal, besthea, https://github.com/zap150/besthea, 2020.
23.
M. Messner, A Fast Multipole Galerkin Boundary Element Method for the Transient Heat Equation, Monographic Series TU Graz: Computation in Engineering and Science 23, 1st ed., Verlag der Technischen Universität Graz, 2014, https://doi.org/10.3217/978-3-85125-350-4.
24.
M. Messner, M. Schanz, and J. Tausch, A fast Galerkin method for parabolic space--time boundary integral equations, J. Comput. Phys., 258 (2014), pp. 15--30, https://doi.org/10.1016/j.jcp.2013.10.029.
25.
M. Messner, M. Schanz, and J. Tausch, An efficient Galerkin boundary element method for the transient heat equation, SIAM J. Sci. Comput., 37 (2015), pp. A1554--A1576, https://doi.org/10.1137/151004422.
26.
J. Schuchart, K. Tsugane, J. Gracia, and M. Sato, The impact of taskyield on the design of tasks communicating through MPI, in Evolving OpenMP for Evolving Architectures, B. R. de Supinski, P. Valero-Lara, X. Martorell, S. Mateo Bellido, and J. Labarta, eds., Springer, Cham, 2018, pp. 3--17, https://doi.org/10.1007/978-3-319-98521-3_1.
27.
T. Takahashi, An interpolation-based fast-multipole accelerated boundary integral equation method for the three-dimensional wave equation, J. Comput. Phys., 258 (2014), pp. 809--832, https://doi.org/10.1016/j.jcp.2013.11.008.
28.
J. Tausch, A fast method for solving the heat equation by layer potentials, J. Comput. Phys., 224 (2007), pp. 956--969, https://doi.org/10.1016/j.jcp.2006.11.001.
29.
J. Tausch, Fast Nyström methods for parabolic boundary integral equations, in Fast Boundary Element Methods in Engineering and Industrial Applications, U. Langer, M. Schanz, O. Steinbach, and W. Wendland, eds., Lect. Notes Appl. Comput. Mech. 63, Springer-Verlag, Heidelberg, 2012, pp. 185--219, https://doi.org/10.1007/978-3-642-25670-7_6.
30.
J. Tausch and A. Weckiewicz, Multidimensional fast Gauss transforms by Chebyshev expansions, SIAM J. Sci. Comput., 31 (2009), pp. 3547-3565, https://doi.org/10.1137/080732729.
31.
T. Wang, C. D. Cooper, T. Betcke, and L. A. Barba, High-Productivity, High-Performance Workflow for Virus-Scale Electrostatic Simulations with Bempp-Exafmm, preprint, https://arxiv.org/abs/2103.01048, 2021.
32.
M. S. Warren and J. K. Salmon, A parallel hashed oct-tree N-body algorithm, in Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, Supercomputing '93, New York, 1993, Association for Computing Machinery, 1993, pp. 12--21, https://doi.org/10.1145/169627.169640.
33.
R. Yokota and L. A. Barba, A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems, J. High Perform. Comput. Appl., 26 (2012), pp. 337--346, https://doi.org/10.1177/1094342011429952.
34.
J. Zapletal, R. Watschinger, G. Of, and M. Merta, Semi-analytic integration for a parallel space-time boundary element method modeling the heat equation, Comput. Math. Appl., 103 (2021), pp. 156--170, https://doi.org/10.1016/j.camwa.2021.10.025.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: C320 - C345
ISSN (online): 1095-7197

History

Submitted: 29 June 2021
Accepted: 24 March 2022
Published online: 4 August 2022

Keywords

  1. boundary element method
  2. space-time
  3. heat equation
  4. FMM
  5. parallelization
  6. HPC

MSC codes

  1. 65M38
  2. 65Y05
  3. 35K05

Authors

Affiliations

Funding Information

MOE Czech : 90140
Austrian Science Fund https://doi.org/10.13039/501100002428 : 4033-N32
Grantová Agentura České Republiky https://doi.org/10.13039/501100001824 : 19-29698L

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.