Abstract

In this paper, a well-posed simultaneous space-time first order system least squares formulation is constructed of the instationary incompressible Stokes equations with slip boundary conditions. As a consequence of this well-posedness, the minimization over any conforming triple of finite element spaces for velocities, pressure, and stress tensor gives a quasi-best approximation from that triple. The formulation is practical in the sense that all norms in the least squares functional can be efficiently evaluated. Being of least squares type, the formulation comes with an efficient and reliable a posteriori error estimator. In addition, a priori error estimates are derived, and numerical results are presented.

Keywords

  1. instationary Stokes equations
  2. slip boundary conditions
  3. simultaneous space-time variational formulation
  4. first order system least squares (FOSLS)
  5. finite elements with a commuting diagram

MSC codes

  1. 35F46
  2. 35K20
  3. 35A15
  4. 65M12
  5. 65M15
  6. 65M60
  7. 76D07

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. N. Arnold, G. Awanou, and R. Winther, Finite elements for symmetric tensors in three dimensions, Math. Comp., 77 (2008), pp. 1229--1251, https://doi.org/10.1090/S0025-5718-08-02071-1.
2.
N. Ahmed, G. R. Barrenechea, E. Burman, J. Guzmán, A. Linke, and Ch. Merdon, A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation, SIAM J. Numer. Anal., 59 (2021), pp. 2746--2774, https://doi.org/10.1137/20M1351230.
3.
R. Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations, IMA J. Numer. Anal., 33 (2013), pp. 242--260, https://doi.org/10.1093/imanum/drs014.
4.
D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math., 92 (2002), pp. 401--419, https://doi.org/10.1007/s002110100348.
5.
E. Burman, S. H. Christiansen, and P. Hansbo, Application of a minimal compatible element to incompressible and nearly incompressible continuum mechanics, Comput. Methods Appl. Mech. Engrg., 369 (2020), 113224, https://doi.org/10.1016/j.cma.2020.113224.
6.
P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, Appl. Math. Sci. 166, Springer, New York, 2009, https://doi.org/10.1007/b13382.
7.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008, https://doi.org/10.1007/978-0-387-75934-0.
8.
S. H. Christiansen and K. Hu, Generalized finite element systems for smooth differential forms and Stokes' problem, Numer. Math., 140 (2018), pp. 327--371, https://doi.org/10.1007/s00211-018-0970-6.
9.
S. H. Christiansen and K. Hu, Finite element systems for vector bundles: Elasticity and curvature, Found. Comput. Math., 2022, https://doi.org/10.1007/s10208-022-09555-x.
10.
D. Devaud, Petrov-Galerkin space-time $hp$-approximation of parabolic equations in $H^{1/2}$, IMA J. Numer. Anal., 40 (2020), pp. 2717--2745, https://doi.org/10.1093/imanum/drz036.
11.
W. Dörfler, S. Findeisen, and Ch. Wieners, Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems, Comput. Methods Appl. Math., 16 (2016), pp. 409--428, https://doi.org/10.1515/cmam-2016-0015.
12.
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5. Evolution Problems I, Springer-Verlag, Berlin, 1992, https://doi.org/10.1007/978-3-642-58090-1.
13.
L. Diening and J. Storn, A space-time DPG method for the heat equation, Comput. Math. Appl., 105 (2022), pp. 41--53, https://doi.org/10.1016/j.camwa.2021.11.013.
14.
T. Führer and M. Karkulik, Space-time least-squares finite elements for parabolic equations, Comput. Math. Appl., 92 (2021), pp. 27--36, https://doi.org/10.1016/j.camwa.2021.03.004.
15.
M. Fontes, Initial-boundary value problems for parabolic equations, Ann. Acad. Sci. Fenn. Math., 34 (2009), pp. 583--605.
16.
J. Guzmán and M. Neilan, Symmetric and conforming mixed finite elements for plane elasticity using rational bubble functions, Numer. Math., 126 (2014), pp. 153--171, https://doi.org/10.1007/s00211-013-0557-1.
17.
V. Girault and P. A. Raviart, An analysis of a mixed finite element method for the Navier-Stokes equations, Numer. Math., 33 (1979), pp. 235--271.
18.
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, Berlin, 1986.
19.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. Stud. Math. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.
20.
H. Gimperlein and J. Stocek, Space-time adaptive finite elements for nonlocal parabolic variational inequalities, Comput. Methods Appl. Mech. Engrg., 352 (2019), pp. 137--171, https://doi.org/10.1016/j.cma.2019.04.019.
21.
G. Gantner and R. Stevenson, Further results on a space-time FOSLS formulation of parabolic PDEs, ESAIM Math. Model. Numer. Anal., 55 (2021), pp. 283--299, https://doi.org/10.1051/m2an/2020084.
22.
R. Guberovic, Ch. Schwab, and R. Stevenson, Space-time variational saddle point formulations of Stokes and Navier-Stokes equations, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 875--894, https://doi.org/10.1051/m2an/2013124.
23.
J. Hu, Finite element approximations of symmetric tensors on simplicial grids in $\Bbb R^n$: The higher order case, J. Comput. Math., 33 (2015), pp. 283--296, https://doi.org/10.4208/jcm.1412-m2014-0071.
24.
J. Hu and S. Zhang, Finite element approximations of symmetric tensors on simplicial grids in $\Bbb{R}^n$: The lower order case, Math. Models Methods Appl. Sci., 26 (2016), pp. 1649--1669, https://doi.org/10.1142/S0218202516500408.
25.
C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Math., 30 (1978), pp. 103--116, https://doi.org/10.1007/BF01403910.
26.
J. A. Nitsche, On Korn's second inequality, RAIRO Anal. Numér., 15 (1981), pp. 237--248.
27.
M. Neumüller and I. Smears, Time-parallel iterative solvers for parabolic evolution equations, SIAM J. Sci. Comput., 41 (2019), pp. C28--C51, https://doi.org/10.1137/18M1172466.
28.
Ch. Schwab and R. Stevenson, A space-time adaptive wavelet method for parabolic evolution problems, Math. Comp., 78 (2009), pp. 1293--1318, https://doi.org/10.1090/S0025-5718-08-02205-9.
29.
Ch. Schwab and R. Stevenson, Fractional space-time variational formulations of (Navier--)Stokes equations, SIAM J. Math. Anal., 49 (2017), pp. 2442--2467, https://doi.org/10.1137/15M1051725.
30.
R. P. Stevenson, R. van Venetië, and J. Westerdiep, A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations, Adv. Comput. Math., 48 (2022), 17, https://arxiv.org/abs/2101.03956.
31.
O. Steinbach and H. Yang. Comparison of algebraic multigrid methods for an adaptive space-time finite-element discretization of the heat equation in $3$D and $4$D, Numer. Linear Algebra Appl., 25 (2018), e2143, https://doi.org/10.1002/nla.2143.
32.
O. Steinbach and M. Zank, Coercive space-time finite element methods for initial boundary value problems, Electron. Trans. Numer. Anal., 52 (2020), pp. 154--194, https://doi.org/10.1553/etna_vol52s154.
33.
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, revised ed., Stud. Math. Appl. 2, North-Holland, Amsterdam, 1979.
34.
R. Verfürth, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition, Numer. Math., 50 (1987), pp. 697--721, https://doi.org/10.1007/BF01398380.
35.
R. van Venetië and J. Westerdiep, A parallel algorithm for solving linear parabolic evolution equations, in Parallel-in-Time Integration Methods, Springer Proc. Math. Stat. 356, Springer, Cham, 2021, pp. 33--50.
36.
R. van Venetië and J. Westerdiep, Efficient Space-Time Adaptivity for Parabolic Evolution Equations Using Wavelets in Time and Finite Elements in Space, preprint, https://arxiv.org/abs/2104.08143, 2021.
37.
J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, UK, 1987, https://doi.org/10.1017/CBO9781139171755.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1607 - 1629
ISSN (online): 1095-7170

History

Submitted: 9 July 2021
Accepted: 21 March 2022
Published online: 30 June 2022

Keywords

  1. instationary Stokes equations
  2. slip boundary conditions
  3. simultaneous space-time variational formulation
  4. first order system least squares (FOSLS)
  5. finite elements with a commuting diagram

MSC codes

  1. 35F46
  2. 35K20
  3. 35A15
  4. 65M12
  5. 65M15
  6. 65M60
  7. 76D07

Authors

Affiliations

Funding Information

Austrian Science Fund https://doi.org/10.13039/501100002428 : J4379-N
National Science Foundation https://doi.org/10.13039/100000001 : DMS-172029

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media