Abstract

In this paper, we present the new “asynchronous truncated multigrid-reduction-in-time” (AT-MGRIT) algorithm for introducing time parallelism to the solution of discretized time-dependent problems. The new algorithm is based on the multigrid-reduction-in-time (MGRIT) approach, which, in certain settings, is equivalent to another common multilevel parallel-in-time method, Parareal. In contrast to Parareal and MGRIT that both consider a global temporal grid over the entire time interval on the coarsest level, the AT-MGRIT algorithm uses truncated local time grids on the coarsest level, each grid covering certain temporal subintervals. These local grids can be solved completely in an independent way from each other, which reduces the sequential part of the algorithm and, thus, increases parallelism in the method. Here, we study the effect of using truncated local coarse grids on the convergence of the algorithm, both theoretically and numerically, and show, using challenging nonlinear problems, that the new algorithm consistently outperforms classical Parareal/MGRIT in terms of time to solution.

Keywords

  1. parallel-in-time integration
  2. Parareal
  3. MGRIT
  4. truncated coarsest grids

MSC codes

  1. 65F10
  2. 65M22
  3. 65M55

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Technical Report ANL-95/11 - Revision 3.13, Argonne National Laboratory, 2020.
2.
R. Bank, R. Falgout, T. Jones, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge, Algebraic multigrid domain and range decomposition (AMG-DD/AMG-RD), SIAM J. Sci. Comput., 37 (2015), pp. S113--S136.
3.
A. Bartel, S. Baumanns, and S. Schöps, Structural analysis of electrical circuits including magnetoquasistatic devices, Appl. Numer. Math., 61 (2011), pp. 1257--1270.
4.
M. Bolten, S. Friedhoff, J. Hahne, and S. Schöps, Parallel-in-time simulation of an electrical machine using MGRIT, Comput. Vis. Sci., 23 (2020), 14.
5.
A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp. 333--390.
6.
D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra Appl., 2 (1969), pp. 199--222.
7.
I. Cortes Garcia, H. De Gersem, and S. Schöps, A structural analysis of field/circuit coupled problems based on a generalised circuit element, Numer. Algorithms, 83 (2020), pp. 373--394.
8.
F. Danieli and S. MacLachlan, Multigrid Reduction in Time for Non-Linear Hyperbolic Equations, preprint, arXiv:2104.09404, 2021, https://arxiv.org/abs/2104.09404.
9.
V. A. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder, Two-level convergence theory for multigrid reduction in time (MGRIT), SIAM J. Sci. Comput., 39 (2017), pp. S501--S527.
10.
P. Dular, C. Geuzaine, F. Henrotte, and W. Legros, A general environment for the treatment of discrete problems and its application to the finite element method, IEEE Trans. Magn., 34 (1998), pp. 3395--3398.
11.
R. D. Falgout, S. Friedhoff, T. Kolev, S. MacLachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635--C661.
12.
R. D. Falgout, M. Lecouvez, and C. S. Woodward, A parallel-in-time algorithm for variable step multistep methods, J. Comput. Sci., 37 (2019), 101029.
13.
M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition, Springer, Cham, 2015, pp. 69--113.
14.
C. Geuzaine, GetDP: A general finite-element solver for the de Rham complex, PAMM Proc. Appl. Math. Mech., 7 (2007), pp. 1010603--1010604.
15.
C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), pp. 1309--1331.
16.
C. Geuzaine and J.-F. Remacle, Gmsh, 2020, http://www.gmsh.info, accessed June 21, 2021.
17.
J. Gyselinck, L. Vandevelde, and J. Melkebeek, Multi-slice FE modeling of electrical machines with skewed slots-the skew discretization error, IEEE Trans. Magn., 37 (2001), pp. 3233--3237.
18.
J. Hahne and S. Friedhoff, Github repository for PyMGRIT, 2020, https://github.com/pymgrit/pymgrit, accessed June 21, 2021.
19.
J. Hahne, S. Friedhoff, and M. Bolten, Algorithm 1016: PyMGRIT: A python package for the parallel-in-time method MGRIT, ACM Trans. Math. Softw., 47 (2021) pp. 1--22.
20.
A. Howse, H. De Sterck, R. D. Falgout, S. MacLachlan, and J. B. Schroder, Parallel-in-time multigrid with adaptive spatial coarsening for the linear advection and inviscid burgers equations, SIAM J. Sci. Comput., 41 (2019), pp. A538--A565.
21.
J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1998.
22.
L. Kronsjö, A note on the “nested iterations” methods, BIT, 15 (1975), pp. 107--110.
23.
L. Kronsjö and G. Dahlquist, On the design of nested iterations for elliptic difference equations, BIT, 12 (1972), pp. 63--71.
24.
J.-L. Lions, Y. Maday, and G. Turinici, Résolution d'EDP par un schéma en temps “pararéel'', C. R. Acad. Sci. Paris, 332 (2001), pp. 661--668.
25.
T. Lunet, J. Bodart, S. Gratton, and X. Vasseur, Time-parallel simulation of the decay of homogeneous turbulence using parareal with spatial coarsening, Comput. Vis. Sci., 19 (2018), pp. 31--44.
26.
F. Magoulès, G. Gbikpi-Benissan, and Q. Zou, Asynchronous iterations of parareal algorithm for option pricing models, Mathematics, 6 (2018), 45.
27.
W. Mitchell and T. Manteuffel, Advances in implementation, theoretical motivation, and numerical results for the nested iteration with range decomposition algorithm, Numer. Linear Algebra Appl., 25 (2018), e2149.
28.
W. B. Mitchell, R. Strzodka, and R. D. Falgout, Parallel performance of algebraic multigrid domain decomposition, Numer. Linear Algebra Appl., 28 (2021), e2342.
29.
A. S. Nielsen, G. Brunner, and J. S. Hesthaven, Communication-aware adaptive Parareal with application to a nonlinear hyperbolic system of partial differential equations, J. Comput. Phys., 371 (2018), pp. 483--505.
30.
J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM, 7 (1964), pp. 731--733.
31.
B. W. Ong and J. B. Schroder, Applications of time parallelization, Comput. Vis. Sci., 23 (2020), 11.
32.
J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), pp. 189--192.
33.
M. Ries, U. Trottenberg, and G. Winter, A note on MGR methods, Linear Algebra Appl., 49 (1983), pp. 1--26.
34.
D. Ruprecht, Convergence of Parareal with spatial coarsening, PAMM Proc. Appl. Math. Mech., 14 (2014), pp. 1031--1034.
35.
S. Schöps, I. Niyonzima, and M. Clemens, Parallel-in-time simulation of eddy current problems using Parareal, IEEE Trans. Magn., 54 (2018), pp. 1--4.
36.
B. S. Southworth, Necessary conditions and tight two-level convergence bounds for Parareal and multigrid reduction in time, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 564--608.
37.
B. S. Southworth, W. Mitchell, A. Hessenthaler, and F. Danieli, Tight Two-Level Convergence of Linear Parareal and MGRIT: Extensions and Implications in Practice, preprint, arXiv:2010.11879, 2020.
38.
U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, London, 2001.
39.
Q. Zou, G. Gbikpi-Benissan, and F. Magoulès, Asynchronous parareal algorithm applied to european option pricing, in Proceedings of the 2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering, and Science (DCABES), IEEE, 2017, pp. 37--40.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: S281 - S306
ISSN (online): 1095-7197

History

Submitted: 12 July 2021
Accepted: 26 July 2022
Published online: 22 November 2022

Keywords

  1. parallel-in-time integration
  2. Parareal
  3. MGRIT
  4. truncated coarsest grids

MSC codes

  1. 65F10
  2. 65M22
  3. 65M55

Authors

Affiliations

Funding Information

Bundesministerium für Bildung und Forschung https://doi.org/10.13039/501100002347 : 05M18PXB
Los Alamos National Laboratory https://doi.org/10.13039/100008902 : LA-UR-21-26105

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.