Abstract

In 1967, Erdös asked for the greatest chromatic number, $f(n)$, amongst all $n$-vertex, triangle-free graphs. An observation of Erdös and Hajnal together with Shearer's classical upper bound for the off-diagonal Ramsey number $R(3, t)$ shows that $f(n)$ is at most $(2 \sqrt{2} + o(1)) \sqrt{n/\log n}$. We improve this bound by a factor $\sqrt{2}$, as well as obtaining an analogous bound on the list chromatic number which is tight up to a constant factor. A bound in terms of the number of edges that is similarly tight follows, and these results confirm a conjecture of Cames van Batenburg et al. [Electron. J. Combin., 27 (2020), P2.34].

Keywords

  1. colorings and list colorings
  2. Ramsey problems
  3. extremal graph theory

MSC codes

  1. 05C15
  2. 05C35
  3. 05D10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. Achlioptas, F. Iliopoulos, and A. Sinclair, Beyond the Lovász local lemma: Point to set correlations and their algorithmic applications, in Proceedings of the 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), Baltimore, MD, 2019, IEEE, pp. 725--744, https://doi.org/10.1109/FOCS.2019.00049.
2.
M. Ajtai, J. Komlós, and E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A, 29 (1980), pp. 354--360, https://doi.org/10.1016/0097-3165(80)90030-8.
3.
N. Alon and S. Assadi, Palette sparsification beyond $(\Delta + 1)$ vertex coloring, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020), J. Byrka and R. Meka, eds., Leibniz International Proceedings in Informatics 176 (LIPIcs), Dagstuhl, Germany, 2020, Schloss Dagstuhl--Leibniz-Zentrum für Informatik, 6, https://arxiv.org/abs/2006.10456.
4.
N. Alon, J. H. Spencer, and P. Erd\Hos, The Probabilistic Method, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York, 1992.
5.
O. Amini and B. Reed, List colouring constants of triangle free graphs, Electron. Notes Discrete Math., 30 (2008), pp. 135--140, https://doi.org/10.1016/j.endm.2008.01.024.
6.
A. Bernshteyn, The asymptotic behavior of the correspondence chromatic number, Discrete Math., 339 (2016), pp. 2680--2692, https://doi.org/10.1016/j.disc.2016.05.012.
7.
A. Bernshteyn, The Johansson-Molloy theorem for DP-coloring, Random Structures Algorithms, 54 (2019), pp. 653--664, https://doi.org/10.1002/rsa.20811.
8.
T. Bohman, The triangle-free process, Adv. Math., 221 (2009), pp. 1653--1677, https://doi.org/10.1016/j.aim.2009.02.018.
9.
T. Bohman and P. Keevash, Dynamic concentration of the triangle-free process, Random Structures Algorithms, 58 (2021), pp. 221--293, https://doi.org/10.1002/rsa.20973.
10.
M. Bonamy, T. Kelly, P. Nelson, and L. Postle, Bounding $\chi$ by a Fraction of $\Delta$ for Graphs without Large Cliques, preprint, https://arxiv.org/abs/1803.01051, 2018.
11.
S. Cambie and R. J. Kang, Independent transversals in bipartite correspondence-covers, Can. Math. Bulletin, (2021), pp. 1--13, https://doi.org/10.4153/S0008439521001004.
12.
W. Cames van Batenburg, R. de Joannis de Verclos, R. J. Kang, and F. Pirot, Bipartite induced density in triangle-free graphs, Electron. J. Combin., 27 (2020), P2.34, https://doi.org/10.37236/8650.
13.
E. Davies, R. de Joannis de Verclos, R. J. Kang, and F. Pirot, Coloring triangle-free graphs with local list sizes, Random Structures Algorithms, 57 (2020), pp. 730--744, https://doi.org/10.1002/rsa.20945.
14.
E. Davies, R. de Joannis de Verclos, R. J. Kang, and F. Pirot, Occupancy fraction, fractional colouring, and triangle fraction, J. Graph Theory, 97 (2021), pp. 557--568, https://doi.org/10.1002/jgt.22671.
15.
E. Davies, R. J. Kang, F. Pirot, and J.-S. Sereni, Graph Structure via Local Occupancy, preprint, https://arxiv.org/abs/2003.14361, 2020.
16.
P. Erdös and A. Hajnal, Chromatic number of finite and infinite graphs and hypergraphs, Discrete Math., 53 (1985), pp. 281--285, https://doi.org/10.1016/0012-365X(85)90148-7.
17.
P. Erdös, Some remarks on chromatic graphs, Colloq. Math., 16 (1967), pp. 253--256, https://doi.org/10.4064/cm-16-1-253-256.
18.
G. Fiz Pontiveros, S. Griffiths, and R. Morris, The triangle-free process and the Ramsey number $R(3,k)$, Mem. Amer. Math. Soc., 263 (2020), 1274, https://doi.org/10.1090/memo/1274.
19.
J. Gimbel and C. Thomassen, Coloring triangle-free graphs with fixed size, Discrete Math., 219 (2000), pp. 275--277, https://doi.org/10.1016/S0012-365X(00)00087-X.
20.
S. Janson, T. Łuczak, and A. Rucinski, Random Graphs, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 2000.
21.
T. R. Jensen and B. Toft, Graph Coloring Problems, John Wiley & Sons, 1994, https://doi.org/10.1002/9781118032497.
22.
T. Kelly, Cliques, Degrees, and Coloring: Expanding the $\omega$, $\Delta$, $\chi$ Paradigm, Ph.D. thesis, University of Waterloo, Ontario, Canada, 2019, http://hdl.handle.net/10012/14862.
23.
T. Kelly and L. Postle, Fractional Coloring with Local Demands, preprint, https://arxiv.org/abs/1811.11806, 2018.
24.
J. H. Kim, The Ramsey number $R(3, t)$ has order of magnitude $t^2/\log t$, Random Structures Algorithms, 7 (1995), pp. 173--207, https://doi.org/10.1002/rsa.3240070302.
25.
D. Kráľ, O. Pangrác, and H.-J. Voss, A note on group colorings, J. Graph Theory, 50 (2005), pp. 123--129, https://doi.org/10.1002/jgt.20098.
26.
Y. Li, C. C. Rousseau, and W. Zang, Asymptotic upper bounds for Ramsey functions, Graphs Combin., 17 (2001), pp. 123--128, https://doi.org/10.1007/s003730170060.
27.
M. Molloy, The list chromatic number of graphs with small clique number, J. Combin. Theory Ser. B, 134 (2019), pp. 264--284, https://doi.org/10.1016/j.jctb.2018.06.007.
28.
A. Nilli, Triangle-free graphs with large chromatic numbers, Discrete Math., 211 (2000), pp. 261--262, https://doi.org/10.1016/S0012-365X(99)00109-0.
29.
S. Poljak and Z. Tuza, Bipartite subgraphs of triangle-free graphs, SIAM J. Discrete Math., 7 (1994), pp. 307--313, https://doi.org/10.1137/S0895480191196824.
30.
J. B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math., 46 (1983), pp. 83--87, https://doi.org/10.1016/0012-365X(83)90273-X.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 1124 - 1134
ISSN (online): 1095-7146

History

Submitted: 2 August 2021
Accepted: 27 January 2022
Published online: 28 April 2022

Keywords

  1. colorings and list colorings
  2. Ramsey problems
  3. extremal graph theory

MSC codes

  1. 05C15
  2. 05C35
  3. 05D10

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media