Abstract.

In this paper, we consider the classical wave equation with time-dependent, spatially multiscale coefficients. We propose a fully discrete computational multiscale method in the spirit of the localized orthogonal decomposition in space with a backward Euler scheme in time. We show optimal convergence rates in space and time beyond the assumptions of spatial periodicity or scale separation of the coefficients. Further, we propose an adaptive update strategy for the time-dependent multiscale basis. Numerical experiments illustrate the theoretical results and showcase the practicability of the adaptive update strategy.

Keywords

  1. wave equation
  2. numerical homogenization
  3. multiscale method
  4. time-dependent multiscale coefficients
  5. a priori estimates

MSC codes

  1. 35L05
  2. 65M15
  3. 65M60
  4. 65N30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Abdulle and M. J. Grote, Finite element heterogeneous multiscale method for the wave equation, Multiscale Model. Simul, 9 (2011), pp. 766–792, https://doi.org/10.1137/100800488.
2.
A. Abdulle and P. Henning, Localized orthogonal decomposition method for the wave equation with a continuum of scales, Math. Comp., 86 (2017), pp. 549–587, https://doi.org/10.1090/mcom/3114.
3.
H. Ammari and E. O. Hiltunen, Time-Dependent High-Contrast Subwavelength Resonators, preprint, https://arxiv.org/abs/2012.10274, 2020.
4.
G. Bal, M. Fink, and O. Pinaud, Time-reversal by time-dependent perturbations, SIAM J. Appl. Math., 79 (2019), pp. 754–780, https://doi.org/10.1137/18M1216894.
5.
L. A. Bales, Higher order single step fully discrete approximations for second order hyperbolic equations with time dependent coefficients, SIAM J. Numer. Anal., 23 (1986), pp. 27–43, https://doi.org/10.1137/0723003.
6.
L. A. Bales, V. A. Dougalis, and S. M. Serbin, Coine methods for second-order hyperbolic equations with time-dependent coefficients, Math. Comp., 45 (1985), pp. 65–89, https://doi.org/10.2307/2008050.
7.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008, https://doi.org/10.1007/978-0-387-75934-0.
8.
D. Elfverson, V. Ginting, and P. Henning, On multiscale methods in Petrov-Galerkin formulation, Numer. Math., 131 (2015), pp. 643–682, https://doi.org/10.1007/s00211-015-0703-z.
9.
B. Engquist, H. Holst, and O. Runborg, Multi-scale methods for wave propagation in heterogeneous media, Commun. Math. Sci., 9 (2011), pp. 33–56.
10.
D. Gallistl, P. Henning, and B. Verfürth, Numerical homogenization of H(curl)-problems, SIAM J. Numer. Anal., 56 (2018), pp. 1570–1596, https://doi.org/10.1137/17M1133932.
11.
D. Gallistl and D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering, Comput. Methods Appl. Mech. Engrg., 295 (2015), pp. 1–17, https://doi.org/10.1016/j.cma.2015.06.017.
12.
S. Geevers and R. Maier, Fast mass lumped multiscale wave propagation modelling, IMA J. Numer. Anal., (2021), https://doi.org/10.1093/imanum/drab084.
13.
G. Gilardi, Teoremi di regolarità per la soluzione di un’equazione differenziale astratta lineare del secondo ordine, Ist. Lombardo Accad. Sci. Lett. Rend. A, 106 (1972), pp. 641–675.
14.
X. Guo, Y. Ding, Y. Duan, and X. Ni, Nonreciprocal metasurface with space-time phase modulation, Light Sci. Appl, 8 (2019), 123, https://doi.org/10.1038/s41377-019-0225-z.
15.
F. Hellman and T. Keil, Gridlod, https://github.com/fredrikhellman/gridlod, GitHub repository, commit 0ed4c096df75040145978d48c5307ef5678efed3.
16.
F. Hellman, T. Keil, and A. Målqvist, Numerical upscaling of perturbed diffusion problems, SIAM J. Sci. Comput., 42 (2020), pp. A2014–A2036, https://doi.org/10.1137/19M1278211.
17.
F. Hellman and A. Målqvist, Numerical homogenization of elliptic PDEs with similar coefficients, Multiscale Model. Simul., 17 (2019), pp. 650–674, https://doi.org/10.1137/18M1189701.
18.
P. Henning and A. Målqvist, Localized orthogonal decomposition techniques for boundary value problems, SIAM J. Sci. Comput., 36 (2014), pp. A1609–A1634, https://doi.org/10.1137/130933198.
19.
P. Henning and A. Persson, Computational homogenization of time-harmonic Maxwell’s equations, SIAM J. Sci. Comput., 42 (2020), pp. B581–B607, https://doi.org/10.1137/19M1293818.
20.
P. Henning and D. Peterseim, Oversampling for the multiscale finite element method, Multiscale Model. Simul., 11 (2013), pp. 1149–1175, https://doi.org/10.1137/120900332.
21.
M. Hochbruck and B. Maier, Error Analysis for Space Discretizations of Quasilinear Wave-Type Equations, IMA J. Numer. Anal., 42 (2022), pp. 1963–1990, https://doi.org/10.1093/imanum/drab073.
22.
L. Jiang and Y. Efendiev, A priori estimates for two multiscale finite element methods using multiple global fields to wave equations, Numer. Methods Partial Differential Equations, 28 (2012), pp. 1869–1892, https://doi.org/10.1002/num.20706.
23.
L. Jiang, Y. Efendiev, and V. Ginting, Analysis of global multiscale finite element methods for wave equations with continuum spatial scales, Appl. Numer. Math., 60 (2010), pp. 862–876, https://doi.org/10.1016/j.apnum.2010.04.011.
24.
J. Li, C. Shen, X. Zhu, Y. Xie, and S. A. Cummer, Nonreciprocal sound propagation in space-time modulated media, Phys. Rev. B, 99 (2019), 144311, https://doi.org/10.1103/PhysRevB.99.144311.
25.
P. Ljung, A. Målqvist, and A. Persson, A generalized finite element method for the strongly damped wave equation with rapidly varying data, ESAIM Math. Model. Numer. Anal., 55 (2021), pp. 1375–1403, https://doi.org/10.1051/m2an/2021023.
26.
A. Målqvist and A. Persson, Multiscale techniques for parabolic equations, Numer. Math., 138 (2018), pp. 191–217, https://doi.org/10.1007/s00211-017-0905-7.
27.
A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems, Math. Comp., 83 (2014), pp. 2583–2603, https://doi.org/10.1090/S0025-5718-2014-02868-8.
28.
A. Målqvist and D. Peterseim, Numerical Homogenization by Localized Orthogonal Decomposition, SIAM Spotlights 5, SIAM, Philadelphia, 2021, https://doi.org/10.1137/1.9781611976458.
29.
B. Maier, Error analysis for Full Discretizations of Quasilinear Wave-Type Equations with Two Variants of the Implicit Midpoint Rule, IMA J. Numer. Anal., (2022), https://doi.org/10.1093/imanum/drac010.
30.
R. Maier and D. Peterseim, Explicit computational wave propagation in micro-heterogeneous media, BIT, 59 (2019), pp. 443–462, https://doi.org/10.1007/s10543-018-0735-8.
31.
R. Maier and B. Verfürth, Multiscale scattering in nonlinear Kerr-type media, Math. Comp., 91 (2022), pp. 1655–1685, https://doi.org/10.1090/mcom/3722.
32.
V. Nikolić and B. Wohlmuth, A priori error estimates for the finite element approximation of Westervelt’s quasi-linear acoustic wave equation, SIAM J. Numer. Anal., 57 (2019), pp. 1897–1918, https://doi.org/10.1137/19M1240873.
33.
H. Owhadi and L. Zhang, Numerical homogenization of the acoustic wave equations with a continuum of scales, Comput. Methods Appl. Mech. Engrg., 198 (2008), pp. 397–406, https://doi.org/10.1016/j.cma.2008.08.012.
34.
D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction, Math. Comp., 86 (2017), pp. 1005–1036, https://doi.org/10.1090/mcom/3156.
35.
D. Peterseim and M. Schedensack, Relaxing the CFL condition for the wave equation on adaptive meshes, J. Sci. Comput., 72 (2017), pp. 1196–1213, https://doi.org/10.1007/s10915-017-0394-y.
36.
D. Peterseim and B. Verfürth, Computational high frequency scattering from high-contrast heterogeneous media, Math. Comp., 89 (2020), pp. 2649–2674, https://doi.org/10.1090/mcom/3529.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 1169 - 1190
ISSN (online): 1540-3467

History

Submitted: 2 August 2021
Accepted: 10 May 2022
Published online: 26 October 2022

Keywords

  1. wave equation
  2. numerical homogenization
  3. multiscale method
  4. time-dependent multiscale coefficients
  5. a priori estimates

MSC codes

  1. 35L05
  2. 65M15
  3. 65M60
  4. 65N30

Authors

Affiliations

Bernhard Maier
Institut für Angewandte und Numerische Mathematik, Karlsruhe Institut für Technologie, D-76131 Karlsruhe, Karlsruhe, Germany ([email protected], [email protected]).
Institut für Angewandte und Numerische Mathematik, Karlsruhe Institut für Technologie, D-76131 Karlsruhe, Karlsruhe, Germany ([email protected], [email protected]).

Funding Information

Baden-Wurttemberg Ministry of Science
Klaus-Tschira Foundation
The work of the authors was supported by German Research Foundation (DFG) project 258734477 - SFB 1173, the Federal Ministry of Education and Research (BMBF), and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments. The work of the second author was also supported by the Klaus-Tschira Foundation.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media