Abstract

In this paper we consider a mixed boundary value problem with a nonhomogeneous, nonlinear differential operator (called a double phase operator), a nonlinear convection term (a reaction term depending on the gradient), three multivalued terms, and an implicit obstacle constraint. Under very general assumptions on the data, we prove that the solution set of such an implicit obstacle problem is nonempty (so there is at least one solution) and weakly compact. The proof of our main result uses the Kakutani-Ky Fan fixed point theorem for multivalued operators along with the theory of nonsmooth analysis and variational methods for pseudomonotone operators.

Keywords

  1. Clarke's generalized gradient
  2. convection term
  3. convex subdifferential
  4. double phase problem
  5. existence results
  6. implicit obstacle
  7. Kakutani-Ky Fan fixed point theorem
  8. mixed boundary conditions
  9. multivalued mapping

MSC codes

  1. 35J20
  2. 35J25
  3. 35J60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. Alleche and V. D. Rădulescu, Set-valued equilibrium problems with applications to Browder variational inclusions and to fixed point theory, Nonlinear Anal. Real World Appl., 28 (2016), pp. 251--268.
2.
D. Aussel, A. Sultana, and V. Vetrivel, On the existence of projected solutions of quasi-variational inequalities and generalized Nash equilibrium problems, J. Optim. Theory Appl., 170 (2016), pp. 818--837.
3.
A. Bahrouni, V. D. Rădulescu, and D. D. Repovš, Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves, Nonlinearity, 32 (2019), pp. 2481--2495.
4.
A. Bahrouni, V. D. Rădulescu, and P. Winkert, Double phase problems with variable growth and convection for the Baouendi-Grushin operator, Z. Angew. Math. Phys., 71 (2020).
5.
P. Baroni, M. Colombo, and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), pp. 206--222.
6.
P. Baroni, M. Colombo, and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57 (2018).
7.
S. Biagi, F. Esposito, and E. Vecchi, Symmetry and monotonicity of singular solutions of double phase problems, J. Differential Equations, 280 (2021), pp. 435--463.
8.
G. Bonanno, D. Motreanu, and P. Winkert, Variational-hemivariational inequalities with small perturbations of nonhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 381 (2011), pp. 627--637.
9.
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
10.
S. Carl and V. K. Le, Multi-Valued Variational Inequalities and Inclusions, Springer Monogr. Math., Springer, New York, 2021.
11.
S. Carl and P. Winkert, General comparison principle for variational-hemivariational inequalities, J. Inequal. Appl., 2009.
12.
M. Cencelj, V. D. Rădulescu, and D. D. Repovš, Double phase problems with variable growth, Nonlinear Anal., 177 (2018), pp. 270--287.
13.
F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1983.
14.
F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl. (4), 195 (2016), pp. 1917--1959.
15.
M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218 (2015), pp. 219--273.
16.
M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), pp. 443--496.
17.
Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, and P. Winkert, A New Class of Double Phase Variable Exponent Problems: Existence and Uniqueness, https://arxiv.org/abs/2103.08928, 2021.
18.
A. L. A. de Araujo and L. F. O. Faria, Positive solutions of quasilinear elliptic equations with exponential nonlinearity combined with convection term, J. Differential Equations, 267 (2019), pp. 4589--4608.
19.
S. El Manouni, G. Marino, and P. Winkert, Existence results for double phase problems depending on Robin and Steklov eigenvalues for the $p$-Laplacian, Adv. Nonlinear Anal., 11 (2022), pp. 304--320.
20.
F. Faraci, D. Motreanu, and D. Puglisi, Positive solutions of quasi-linear elliptic equations with dependence on the gradient, Calc. Var. Partial Differential Equations, 54 (2015), pp. 525--538.
21.
F. Faraci and D. Puglisi, A singular semilinear problem with dependence on the gradient, J. Differential Equations, 260 (2016), pp. 3327--3349.
22.
C. Farkas and P. Winkert, An existence result for singular Finsler double phase problems, J. Differential Equations, 286 (2021), pp. 455--473.
23.
G. M. Figueiredo and G. F. Madeira, Positive maximal and minimal solutions for non-homogeneous elliptic equations depending on the gradient, J. Differential Equations, 274 (2021), pp. 857--875.
24.
L. Gasiński and N. S. Papageorgiou, Positive solutions for nonlinear elliptic problems with dependence on the gradient, J. Differential Equations, 263 (2017), pp. 1451--1476.
25.
L. Gasiński and N. S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var., 14 (2021), pp. 613--626.
26.
L. Gasiński and P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differential Equations, 268 (2020), pp. 4183--4193.
27.
L. Gasiński and P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differential Equations, 274 (2021), pp. 1037--1066.
28.
J. Gwinner, An optimization approach to parameter identification in variational inequalities of second kind, Optim. Lett., 12 (2018), pp. 1141--1154.
29.
M. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl., Walter de Gruyter, Berlin, 2001.
30.
W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations, 265 (2018), pp. 4311--4334.
31.
Y. Liu, Z. Liu, C.-F. Wen, J.-C. Yao, and S. Zeng, Existence of solutions for a class of noncoercive variational-hemivariational inequalities arising in contact problems, Appl. Math. Optim., 84 (2021), pp. 2037--2059.
32.
Z. Liu, D. Motreanu, and S. Zeng, Positive solutions for nonlinear singular elliptic equations of $p$-Laplacian type with dependence on the gradient, Calc. Var. Partial Differential Equations, 58 (2019).
33.
S. A. Marano and P. Winkert, On a quasilinear elliptic problem with convection term and nonlinear boundary condition, Nonlinear Anal., 187 (2019), pp. 159--169.
34.
P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), pp. 267--284.
35.
P. Marcellini, Regularity and existence of solutions of elliptic equations with $p,q$-growth conditions, J. Differential Equations, 90 (1991), pp. 1--30.
36.
S. Migórski, A. A. Khan, and S. Zeng, Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of $p$-Laplacian type, Inverse Problems, 35 (2019), 035004.
37.
S. Migórski, A. A. Khan, and S. Zeng, Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems, Inverse Problems, 36 (2020), 024006.
38.
S. Migórski, A. Ochal, and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems, 26 Adv. Mech. Math., Springer, New York, 2013.
39.
G. Mingione and V. Rǎdulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197.
40.
Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Monogr. Textb. Pure Appl. Math. 188, Marcel Dekker, New York, 1995.
41.
P. D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, ZAMM Z. Angew. Math. Mech., 65 (1985), pp. 29--36.
42.
P. D. Panagiotopoulos, Hemivariational Inequalities: Applications in Mechanics and Engineering, Springer, New York, 1993.
43.
N. S. Papageorgiou and S. T. Kyritsi-Yiallourou, Handbook of Applied Analysis, Adv. Mech. Math. 19, Springer, New York, 2009.
44.
N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Existence and multiplicity of solutions for double-phase Robin problems, Bull. Lond. Math. Soc., 52 (2020), pp. 546--560.
45.
N. S. Papageorgiou, V. D. Rădulescu, and D. D. Repovš, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. (9), 136 (2020), pp. 1--21.
46.
N. S. Papageorgiou, C. Vetro, and F. Vetro, Solutions for parametric double phase Robin problems, Asymptot. Anal., 121 (2021), pp. 159--170.
47.
N. S. Papageorgiou and P. Winkert, Applied Nonlinear Functional Analysis: An Introduction, De Gruyter Textbook, Walter De Gruyter, Berlin, 2018.
48.
K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023.
49.
P. Pucci and L. Temperini, Existence for fractional $(p,q)$ systems with critical and Hardy terms in $\Bbb{R}^N $, Nonlinear Anal., 211 (2021), 112477.
50.
V. D. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Anal., 121 (2015), pp. 336--369.
51.
V. D. Rădulescu, Isotropic and anisotropic double-phase problems: Old and new, Opuscula Math., 39 (2019), pp. 259--279.
52.
J. Simon, Régularité de la solution d'une équation non linéaire dans ${R}^{N}$, in Journées d'Analyse Non Linéaire, Lecture Notes in Math. 665, Springer, New York, 1978, pp. 205--227.
53.
J. Stefan, Über einige Probleme der Theorie der Wärmeleitung, Wien. Ber., 98 (1889), pp. 473--484.
54.
S. Zeng, Y. Bai, L. Gasiński, and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations, 59 (2020), 176.
55.
S. Zeng, Y. Bai, L. Gasiński, and P. Winkert, Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal., 10 (2021), pp. 659--672.
56.
S. Zeng, Y. Bai, N. Papageorgiou, and V. D. Rădulescu, Double phase implicit obstacle problems with convection term and multivalued operator, submitted, 2021.
57.
S. Zeng, L. Gasiński, P. Winkert, and Y. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl., 501 (2021), 123997.
58.
S. Zeng, S. Migórski, and A. A. Khan, Nonlinear quasi-hemivariational inequalities: Existence and optimal control, SIAM J. Control Optim., 59 (2021), pp. 1246--1274.
59.
Q. Zhang and V. D. Rădulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. (9), 118 (2018), pp. 159--203.
60.
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), pp. 675--710.
61.
V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), pp. 249--269.
62.
V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. 173, 2011, pp. 463--570.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 1898 - 1926
ISSN (online): 1095-7154

History

Submitted: 17 August 2021
Accepted: 1 November 2021
Published online: 31 March 2022

Keywords

  1. Clarke's generalized gradient
  2. convection term
  3. convex subdifferential
  4. double phase problem
  5. existence results
  6. implicit obstacle
  7. Kakutani-Ky Fan fixed point theorem
  8. mixed boundary conditions
  9. multivalued mapping

MSC codes

  1. 35J20
  2. 35J25
  3. 35J60

Authors

Affiliations

Funding Information

National Science Center of Poland : 2017/25/N/ST1/00611
Yulin Normal University : G2020ZK07
Romanian Ministry of Research, Innovation, and Digitization : PCE 137/202
H2020 Marie Skłodowska-Curie Actions https://doi.org/10.13039/100010665 : 823731 CONMECH
National Natural Science Foundation of China https://doi.org/10.13039/501100001809 : 12001478, 12026255, 12026256
Natural Science Foundation of Guangxi Province https://doi.org/10.13039/501100004607 : 2020GXNSFBA297137

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media