Abstract

Motivated by a wide range of real-world problems whose solutions exhibit boundary and interior layers, the numerical analysis of discretizations of singularly perturbed differential equations is an established subdiscipline within the study of the numerical approximation of solutions to differential equations. Consequently, much is known about how to accurately and stably discretize such equations on a priori adapted meshes in order to properly resolve the layer structure present in their continuum solutions. However, despite being a key step in the numerical simulation process, much less is known about the efficient and accurate solution of the linear systems of equations corresponding to these discretizations. In this paper, we discuss problems associated with the application of direct solvers to these discretizations, and we propose a preconditioning strategy that is tuned to the matrix structure induced by using layer-adapted meshes for convection-diffusion equations, proving a strong condition-number bound on the preconditioned system in one spatial dimension and a weaker bound in two spatial dimensions. Numerical results confirm the efficiency of the resulting preconditioners in one and two dimensions, with time-to-solution of less than one second for representative problems on 1024 x 1024 meshes and up to 40x speedup over standard sparse direct solvers.

Keywords

  1. singularly perturbed differential equations
  2. stable finite-difference discretization
  3. preconditioning
  4. domain decomposition
  5. multigrid methods

MSC codes

  1. 65F08
  2. 65N22
  3. 65N55

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. Adler, S. MacLachlan, and N. Madden, A first-order system Petrov-Galerkin discretisation for a reaction-diffusion problem on a fitted mesh, IMA J. Numer. Anal., 36 (2016), pp. 1281--1309.
2.
R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter, The multigrid method for the diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 430--454.
3.
A. R. Ansari and A. F. Hegarty, A note on iterative methods for solving singularly perturbed problems using non-monotone methods on Shishkin meshes, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 3673--3687, https://doi.org/10.1016/S0045-7825(03)00369-4.
4.
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
5.
T. A. Davis, Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30 (2004), pp. 196--199, https://doi.org/10.1145/992200.992206.
6.
J. E. Dendy, Black box multigrid, J. Comput. Phys., 48 (1982), pp. 366--386.
7.
C. Echeverría, J. Liesen, D. B. Szyld, and P. Tichý, Convergence of the multiplicative Schwarz method for singularly perturbed convection-diffusion problems discretized on a Shishkin mesh, Electron. Trans. Numer. Anal., 48 (2018), pp. 40--62, https://doi.org/10.1553/etna_vol48s40.
8.
P. A. Farrell and G. I. Shishkin, On the convergence of iterative methods for linear systems arising from singularly perturbed equations, in Proceedings of the Copper Mountain Conference on Iterative Methods, Front Range Scientific Computations, 1998, pp. 1--7.
9.
F. J. Gaspar, C. Clavero, and F. Lisbona, Some numerical experiments with multigrid methods on Shishkin meshes, J. Comput. Appl. Math., 138 (2002), pp. 21--35, https://doi.org/10.1016/S0377-0427(01)00365-X.
10.
R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, Philadelphia, 2007, https://doi.org/10.1137/1.9780898717839.
11.
R. Lin and M. Stynes, A balanced finite element method for singularly perturbed reaction-diffusion problems, SIAM J. Numer. Anal., 50 (2012), pp. 2729--2743, https://doi.org/10.1137/110837784.
12.
T. Linŭshapeß, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Lecture Notes in Math. 1985, Springer-Verlag, Berlin, 2010, https://doi.org/10.1007/978-3-642-05134-0.
13.
S. MacLachlan and N. Madden, Robust solution of singularly perturbed problems using multigrid methods, SIAM J. Sci. Comput., 35 (2013), pp. A2225--A2254.
14.
H. MacMullen, E. O'Riordan, and G. I. Shishkin, The convergence of classical Schwarz methods applied to convection-diffusion problems with regular boundary layers, Appl. Numer. Math., 43 (2002), pp. 297--313, https://doi.org/10.1016/S0168-9274(01)00177-5.
15.
T. P. Mathew, Uniform convergence of the Schwarz alternating method for solving singularly perturbed advection-diffusion equations, SIAM J. on Numer. Anal., 35 (1998), pp. 1663--1683, https://doi.org/10.1137/S0036142995296485.
16.
J. J. H. Miller, E. O'Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, Hackensack, NJ, 2012, https://doi.org/10.1142/9789814390743.
17.
K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Appl. Math. Math. Comput., Chapman 121 and Hall, London, 1996.
18.
T. A. Nhan, S. MacLachlan, and N. Madden, Boundary layer preconditioners for finite-element discretizations of singularly perturbed reaction-diffusion problems, Numer. Algorithms, 79 (2018), pp. 281--310.
19.
T. A. Nhan, M. Stynes, and R. Vulanović, Optimal uniform-convergence results for convection-diffusion problems in one dimension using preconditioning, J. Comput. Appl. Math., 338 (2018), pp. 227--238, https://doi.org/10.1016/j.cam.2018.02.012.
20.
T. A. Nhan and R. Vulanović, Analysis of the truncation error and barrier-function technique for a Bakhvalov-type mesh, Electron. Trans. Numer. Anal., 51 (2019), pp. 315--330, https://doi.org/10.1553/etna_vol51s315.
21.
H.-G. Roos, A note on the conditioning of upwind schemes on Shishkin meshes, IMA J. Numer. Anal., 16 (1996), pp. 529--538, https://doi.org/10.1093/imanum/16.4.529.
22.
H.-G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd ed., Springer Ser. Comput. Math., Springer-Verlag, Berlin, 24 2008.
23.
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM Philadelphia, 2003.
24.
M. Stynes and D. Stynes, Convection-Diffusion Problems, Grad. Stud. Math. 196, American Mathematical Society, Providence, RI, 2018.
25.
R. S. Varga, Matrix Iterative Analysis, 2nd ed., Springer Ser. Comput. Math. 127, Springer-Verlag, Berlin, 2000.
26.
H. F. Walker, Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 152--163, https://doi.org/10.1137/0909010.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 561 - 583
ISSN (online): 1095-7162

History

Submitted: 31 August 2021
Accepted: 14 December 2021
Published online: 13 April 2022

Keywords

  1. singularly perturbed differential equations
  2. stable finite-difference discretization
  3. preconditioning
  4. domain decomposition
  5. multigrid methods

MSC codes

  1. 65F08
  2. 65N22
  3. 65N55

Authors

Affiliations

Funding Information

Natural Sciences and Engineering Research Council of Canada https://doi.org/10.13039/501100000038

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media