# An AO-ADMM Approach to Constraining PARAFAC2 on All Modes

## Abstract

### Keywords

### MSC codes

## Get full access to this article

View all available purchase options and get full access to this article.

## Supplementary Material

**PLEASE NOTE: These supplementary files have not been peer-reviewed.**

**Index of Supplementary Materials**

**Title of paper:*** An AO-Admm Approach to Constraining PARAFAC2 on All Modes*

**Authors: ***Marie Roald, Carla Schenker, Vince D. Calhoun, Tulay Adali, Rasmus Bro, Jeremy E. Cohen, and Evrim Acar*

**File:** supplement.pdf

**Type: **PDF

**Contents: **Proofs, more details, and additional simulation experiments.

## References

*Multiway analysis of epilepsy tensors*, Bioinformatics, 23 (2007), pp. i10--i18.

*Unsupervised multiway data analysis: A literature survey*, IEEE Trans. Knowl. Data Eng., 21 (2009), pp. 6--20.

*COPA: Constrained PARAFAC2 for sparse & large datasets*, in Proceedings of CIKM'18, ACM, 2018, pp. 793--802.

*Solving GC-MS problems with PARAFAC2*, TrAC Trends Anal. Chem., 27 (2008), pp. 714--725.

*Unsupervised network discovery for brain imaging data*, in Proceedings of KDD'17, 2017, pp. 55--64.

*First-Order Methods in Optimization*, SIAM, Philadelphia, 2017.

*Nonlinear Programming*, Athena Sci. Optim. Comput. Ser., Athena Scientific, Nashua, NH, 1999.

*Distributed optimization and statistical learning via the alternating direction method of multipliers*, Found. Trends Mach. Learn., 3 (2011), pp. 1--122.

*Convex Optimization*, Cambridge University Press, Cambridge, UK, 2004.

*PARAFAC. tutorial and applications*, Chemom. Intel. Lab. Syst., 38 (1997), pp. 149--172.

*Multi-way Analysis in the Food Industry*, Ph.D. thesis, Royal Veterinary and Agricultural University, Denmark, 1998.

*Improving the speed of multiway algorithms: Part*, Chemom. Intel. Lab. Syst., 42 (1998), pp. 105--113.

*II*: Compression*PARAFAC2 - Part*, J. Chemom., 13 (1999), pp. 295--309.

*II*. Modeling chromatographic data with retention time shifts*A fast non-negativity-constrained least squares algorithm*, J. Chemom., 11 (1997), pp. 393--401.

*Solving the sign indeterminacy for multiway models*, J. Chemom., 27 (2013), pp. 70--75.

*Least squares algorithms under unimodality and non-negativity constraints*, J. Chemom., 12 (1998), pp. 223--247.

*Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition*, Psychometrika, 35 (1970), pp. 283--319.

*Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters*, Psychometrika, 45 (1980), pp. 3--24.

*Blind fMRI source unmixing via higher-order tensor decompositions*, J. Neurosci. Methods, 315 (2019), pp. 17--47.

*Cross-language information retrieval using PARAFAC2*, in Proceedings of KDD'07, 2007, pp. 143--152.

*Nonnegative PARAFAC2: A flexible coupling approach*, in Proceedings of LVA/ICA'18, 2018, pp. 89--98.

*A direct algorithm for 1-D total variation denoising*, IEEE Signal Process. Lett., 20 (2013), pp. 1054--1057.

*Software*, 2019, https://lcondat.github.io/software.html.

*Decompositions of a higher-order tensor in block terms---part*, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1033--1066.

*II*: Definitions and uniqueness*Temporal link prediction using matrix and tensor factorizations*, ACM TKDD, 5 (2011), 10.

*The number of singular vector tuples and uniqueness of best rank-one approximation of tensors*, Found. Comput. Math., 14 (2014), pp. 1209--1242.

*Computing non-negative tensor factorizations*, Optim. Methods Softw., 23 (2008), pp. 631--647.

*Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization*, Neural Comput., 24 (2012), pp. 1085--1105.

*The MCIC collection: A shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia*, Neuroinformatics, 11 (2013), pp. 367--388.

*Beyond rank-1: Discovering rich community structure in multi-aspect graphs*, in Proceedings of WWW'20, 2020, pp. 452--462.

*Foundations of the PARAFAC Procedure: Models and Conditions for an “Explanatory” Multi-Modal Factor Analysis*, UCLA Working Papers in Phonetics 16, UCLA, Los Angeles, CA, 1970, pp. 1--84.

*PARAFAC2: Mathematical and Technical Notes*, UCLA Working Papers in Phonetics 22, UCLA, Los Angeles, CA, 1972, pp. 30--44.

*Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and parafac/candecomp*, Psychometrika, 61 (1996), pp. 133--154.

*The special sign indeterminacy of the direct-fitting Parafac2 model: Some implications, cautions, and recommendations for simultaneous component analysis*, Psychometrika, 78 (2013), pp. 725--739.

*Estimating latent trends in multivariate longitudinal data via Parafac2 with functional and structural constraints*, Biomed. J., 59 (2017), pp. 783--803.

*The expression of a tensor or a polyadic as a sum of products*, J. Math. Phys., 6 (1927), pp. 164--189.

*A flexible and efficient algorithmic framework for constrained matrix and tensor factorization*, IEEE Trans. Signal Process., 64 (2016), pp. 5052--5065.

*A three-step algorithm for CANDECOMP/PARAFAC analysis of large data sets with multicollinearity*, J. Chemom., 12 (1998), pp. 155--171.

*PARAFAC2 - Part*, J. Chemom., 13 (1999), pp. 275--294.

*I*. A direct fitting algorithm for the PARAFAC2 model*Fast nonnegative matrix factorization: An active-set-like method and comparisons*, SIAM J. Sci. Comput., 33 (2011), pp. 3261--3281.

*Tensor decompositions and applications*, SIAM Rev., 51 (2009), pp. 455--500.

*Stochastic gradients for large-scale tensor decomposition*, SIAM J. Math. Data Sci., 2 (2020), p. 1066--1095.

*Multi-task fMRI data fusion using IVA and PARAFAC$2$*, in Proceedings of ICASSP'22, 2022, pp. 1466--1470.

*Quantifying functional connectivity in multi-subject fMRI data using component models*, Human Brain Mapping, 38 (2017), pp. 882--899.

*Expected tensor decomposition with stochastic gradient descent*, in Proceedings of AAAI'16, 2016, p. 1919--1925.

*Subspace learning and imputation for streaming big data matrices and tensors*, IEEE Trans. Signal Process., 63 (2015), pp. 2663--2677.

*Nesterov acceleration of alternating least squares for canonical tensor decomposition: Momentum step size selection and restart mechanisms*, Numer. Linear Algebra Appl., 27 (2020), e2297.

*Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG*, NeuroImage, 29 (2006), pp. 938--947.

*Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor*, IEEE Trans. Signal Process., 57 (2009), pp. 2299--2310.

*Tensors for data mining and data fusion: Models, applications, and scalable algorithms*, ACM Trans. Intell. Syst. Technol., 8 (2016), 16.

*Proximal algorithms*, Found. Trends Mach. Learn., 1 (2014), pp. 127--239.

*Robust irregular tensor factorization and completion for temporal health data analysis*, in Proceedings of CIKM'20, 2020, pp. 1295--1304.

*Tracing network evolution using the PARAFAC2 model*, in Proceedings of ICASSP'20, 2020, pp. 1100--1104.

*PARAFAC2 AO-ADMM: Constraints in all modes*, in Proceedings of EUSIPCO'21, EURASIP, 2021.

*A flexible optimization framework for regularized matrix-tensor factorizations with linear couplings*, IEEE J. Sel. Top. Signal Process., 15 (2021), pp. 506--521.

*An optimization framework for regularized linearly coupled matrix-tensor factorization*, in Proceedings of EUSIPCO'20, EURASIP, 2021, pp. 985--989.

*Extrapolated alternating algorithms for approximate canonical polyadic decomposition*, in Proceedings of ICASSP'20, 2020, pp. 3147--3151.

*Unimodal regression via prefix isotonic regression*, Comput. Statist. Data Anal., 53 (2008), pp. 289--297.

*Some uniqueness results for PARAFAC$2$*, Psychometrika, 61 (1996), pp. 123--132.

*Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems*, J. Chemom., 18 (2004), pp. 441--450.

*Getting to the core of PARAFAC2, a nonnegative approach*, Chemom. Intel. Lab. Syst., 206 (2020), 104127.

*Nonlinear least squares updating of the canonical polyadic decomposition*, in Proceedings of EUSIPCO'17, EURASIP, 2017, pp. 663--667.

*Nonnegative matrix factorization: A comprehensive review*, IEEE Trans. Knowl. Data Eng., 25 (2012), pp. 1336--1353.

*Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis*, Neuron, 98 (2018), pp. 1099--1115.

*LogPar: Logistic PARAFAC2 factorization for temporal binary data with missing values*, in Proceedings of KDD'20, 2020, pp. 1625--1635.

*Accelerating PARAFAC2 algorithms for non-negative complex tensor decomposition*, Chemom. Intel. Lab. Syst., 214 (2021), 104312.

*Degenerate solutions obtained from several variants of factor analysis*, J. Chemom., 16 (2002), pp. 596--605.

## Information & Authors

### Information

#### Published In

#### Copyright

#### History

**Submitted**: 1 October 2021

**Accepted**: 31 May 2022

**Published online**: 30 August 2022

#### Keywords

#### MSC codes

### Authors

#### Funding Information

#### Funding Information

## Metrics & Citations

### Metrics

### Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

#### Cited By

- Unsupervised EHR ‐based phenotyping via matrix and tensor decompositionsWIREs Data Mining and Knowledge Discovery, Vol. 177 | 5 March 2023
- MatCoupLy: Learning coupled matrix factorizations with PythonSoftwareX, Vol. 21 | 1 Feb 2023