Abstract

Bonnet et al. [J. ACM, 69 (2022), 3] introduced the twin-width of a graph. We show that the twin-width of an $n$-vertex graph is less than $(n+\sqrt{n\ln n}+\sqrt{n}+2\ln n)/2$, and the twin-width of an $m$-edge graph for a positive $m$ is less than $\sqrt{3m}+ m^{1/4} \sqrt{\ln m} / (4\cdot 3^{1/4}) + 3m^{1/4} / 2$. Conference graphs of order $n$ (when such graphs exist) have twin-width at least $(n-1)/2$, and we show that Paley graphs achieve this lower bound. We also show that the twin-width of the Erdös--Rényi random graph $G(n,p)$ with $1/n\leq p\leq 1/2$ is larger than $2p(1-p)n - (2\sqrt{2}+\varepsilon)\sqrt{p(1-p)n\ln n}$ asymptotically almost surely for any positive $\varepsilon$. Last, we calculate the twin-width of random graphs $G(n,p)$ with $p\leq c/n$ for a constant $c<1$, determining the thresholds at which the twin-width jumps from $0$ to $1$ and from $1$ to $2$.

Keywords

  1. twin-width
  2. random graphs
  3. extremal
  4. Paley graph

MSC codes

  1. 05C35
  2. 68Q87

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. Balabán and P. Hliněný, Twin-width is linear in the poset width, in 16th International Symposium on Parameterized and Exact Computation, P. A. Golovach and M. Zehavi, eds., LIPIcs Leibniz Int. Proc. Inform. 214, Schloss Dagstuhl -- Leibniz-Zentrum für Informatik, 2021, pp. 6:1--6:13, doi:10.4230/LIPIcs.IPEC.2021.6.
2.
M. Bóna, ed., Handbook of Enumerative Combinatorics, CRC Press, Boca Raton, FL, 2015, doi:10.1201/b18255.
3.
\scÉ. Bonnet, Twin-Width I: Tractable FO Model Checking, https://www.youtube.com/watch?v=DFMEiVz_A3Q.
4.
É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, and R. Watrigant, Twin-width III: Max independent set, min dominating set, and coloring, in 48th International Colloquium on Automata, Languages, and Programming, LIPIcs Leibniz Int. Proc. Inform. 198, Schloss Dagstuhl--Leibniz-Zentrum für Inform, Wadern, 2021, doi:10.4230/LIPIcs.ICALP.2021.35.
5.
É. Bonnet, C. Geniet, E. J. Kim, S. Thomassé, and R. Watrigant, Twin-width II: Small classes, Combin. Theory, 2 (2022), doi:10.5070/C62257876.
6.
É. Bonnet, U. Giocanti, P. Ossona de Mendez, P. Simon, S. Thomassé, and S. Toruńczyk, Twin-width IV: Ordered graphs and matrices, in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, Association for Computing Machinery, 2022, pp. 924--937, doi:10.1145/3519935.3520037.
7.
É. Bonnet, E. J. Kim, A. Reinald, and S. Thomassé, Twin-width VI: The lens of contraction sequences, in Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithm SIAM, Philadelphia, PA, 2022, pp. 1036--1056, doi:10.1137/1.9781611977073.45.
8.
É. Bonnet, E. J. Kim, A. Reinald, S. Thomassé, and R. Watrigant, Twin-width and polynomial kernels, Algorithmica (2022), doi:10.1007/s00453-022-00965-5.
9.
É. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant, Twin-width I: Tractable FO model checking, J. ACM 69 (2022), 3, doi:10.1145/3486655.
10.
É. Bonnet, J. Nešetřil, P. O. de Mendez, S. Siebertz, and S. Thomassé, Twin-Width and Permutations, arXiv:2102.06880, 2021.
11.
J. Dreier, J. Gajarský, Y. Jiang, P. Ossona de Mendez, and J.-F. Raymond, Twin-width and generalized coloring numbers, Discrete Math., 345 (2022), 112746, doi:10.1016/j.disc.2021.112746.
12.
P. Erdös and A. Rényi, On the evolution of random graphs, A Magyar Tudományos Akadémia. Matematikai Kutató Intézetének Közleményei, 5 (1960), pp. 17--61.
13.
P. Erdös and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar., 14 (1963), pp. 295--315, doi:10.1007/BF01895716.
14.
J. Gajarský, M. Pilipczuk, and S. Toruńczyk, Stable Graphs of Bounded Twin-Width, arXiv:2107.03711, 2021.
15.
S. Janson, T. Łuczak, and A. Rucinski, Random Graphs, Wiley Ser. Discrete Math. Optim., Wiley-Interscience, New York, 2000, doi:10.1002/9781118032718.
16.
V. Jelínek, The rank-width of the square grid, Discrete Appl. Math., 158 (2010), pp. 841--850, doi:10.1016/j.dam.2009.02.007.
17.
Ö. Johansson, Graph Decomposition Using Node Labels, Ph.D. thesis, Royal Institute of Technology, 2001.
18.
J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, A bound on the pathwidth of sparse graphs with applications to exact algorithms, SIAM J. Discrete Math., 23 (2009), pp. 407--427, doi:10.1137/080715482.
19.
C. Lee, J. Lee, and S. Oum, Rank-width of random graphs, J. Graph Theory, 70 (2012), pp. 339--347, doi:10.1002/jgt.20620.
20.
A. Schidler and S. Szeider, A SAT approach to twin-width, in Proceedings of the Symposium on Algorithm Engineering and Experiments, SIAM, Philadelphia, 2022, pp. 67--77, doi:10.1137/1.9781611977042.6.
21.
P. Simon and S. Toruńczyk, Ordered Graphs of Bounded Twin-Width, arXiv:2102.06881, 2021.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 2352 - 2366
ISSN (online): 1095-7146

History

Submitted: 14 October 2021
Accepted: 18 July 2022
Published online: 26 September 2022

Keywords

  1. twin-width
  2. random graphs
  3. extremal
  4. Paley graph

MSC codes

  1. 05C35
  2. 68Q87

Authors

Affiliations

Funding Information

Institute for Basic Science https://doi.org/10.13039/501100010446 : IBS-R029-C1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.