# Adaptive Finite Element Approximations for Elliptic Problems using Regularized Forcing Data

## Abstract.

### Keywords

### MSC codes

## Get full access to this article

View all available purchase options and get full access to this article.

## Acknowledgment

## References

*Comput. Methods Appl. Mech. Engrg.*, 345 (2019), pp. 1007–1032.

*Comput. Structures*, 239 (2020), 106334.

*J. Numer. Math.*, 29 (2021), pp. 171–186.

*Comput. Math. Appl.*, 81 (2021), pp. 407–422.

*Math. Comp.*, 44 (1985), pp. 283–301.

*Math. Comp.*, 88 (2019), pp. 2101–2134.

*Numer. Methods Partial Differential Equations*, 34 (2017), pp. 97–120.

*Numer. Math.*, 97 (2004), pp. 219–268.

*Comput. Methods Appl. Mech. Engrg.*, 401, (2022), 115650.

*Comput. Structures*, 81 (2003), pp. 491–501.

*J. Differential Equations*, 279 (2021), pp. 136–161.

*SIAM J. Numer. Anal.*, 51 (2013), pp. 3106–3134.

*SIAM J. Numer. Anal.*, 48 (2010), pp. 734–771.

*SIAM J. Numer. Anal.*, 46 (2008), pp. 2524–2550.

*GEM Int. J. Geomath.*, 10 (2019).

*The Finite Element Method for Elliptic Problems*, Classics in Appl. Math. 40, SIAM, Philadelphia, PA, 2002.

*Found. Comput. Math.*, 12 (2012), pp. 671–718.

*SIAM J. Numer. Anal.*, 33 (1996), pp. 1106–1124.

*Numer. Math.*, 91 (2002), pp. 1–12.

*Theory and Practice of Finite Elements*, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004.

*Elliptic Problems in Nonsmooth Domains*, Monographs and Studies in Mathematics 24, Pitman, Boston, MA, 1985.

*Int. J. Numer. Methods Biomed. Eng.*, 35 (2019), e3264.

*Ann. Biomed. Eng.*, 49 (2021), pp. 3243–3254.

*Comput. Methods Appl. Mech. Engrg.*, 229 (2012), pp. 110–127.

*Numer. Math.*, 146 (2020), pp. 571–596.

*Adaptive Finite Element Approximations for Elliptic Problems Using Regularized Forcing Data*, preprint, https://arxiv.org/abs/2110.15029, 2021.

*Comput. Math. Appl.*, 78 (2019), pp. 3586–3604.

*J. Comput. Phys.*, 305 (2016), pp. 423–447.

*ESAIM Math. Model. Numer. Anal.*, 46 (2012), pp. 1467–1483.

*SIAM J. Sci. Comput.*, 38 (2016), pp. C307–C333.

*Numer. Math.*, 148 (2021), pp. 43–78.

*J. Comput. Appl. Math.*, 393 (2021), 113518.

*Projection in Negative Norms and the Regularization of Rough Linear Functionals*, https://arxiv.org/abs/arXiv:2101.03044, 2021.

*ACM Trans. Math. Software*, 15 (1989), pp. 326–347, 1990.

*Annual Review of Fluid Mechanics*, Annu. Rev. Fluid Mech. 37, Annual Reviews, Palo Alto, CA, 2005, pp. 239–261.

*SIAM J. Numer. Anal.*, 38 (2000), pp. 466–488.

*Math. Comp.*, 64 (1995), pp. 1–22.

*Multiscale, Nonlinear and Adaptive Approximation*, Springer, Berlin, 2009, pp. 409–542.

*Acta Numer.*, 11 (2002), pp. 479–517.

*Nonlinear Anal. Theory Methods Appl.*, 121 (2015), pp. 382–402.

*SIAM J. Numer. Anal.*, 42 (2005), pp. 2188–2217.

*Found. Comput. Math.*, 7 (2007), pp. 245–269.

*Math. Comp.*, 77 (2008), pp. 227–241.

*SIAM J. Sci. Comput.*, 36 (2014), pp. A1831–A1849.

*BIT*, 42 (2002), pp. 644–669.

## Information & Authors

### Information

#### Published In

#### Copyright

#### History

**Submitted**: 28 October 2021

**Accepted**: 25 October 2022

**Published online**: 10 March 2023

#### Keywords

#### MSC codes

### Authors

#### Funding Information

**Funding:**The work of the authors was partially supported by the National Research Projects (PRIN 2017) “Numerical Analysis for Full and Reduced Order Methods for the Efficient and Accurate Solution of Complex Systems Governed by Partial Differential Equations,” funded by the Italian Ministry of Education, University, and Research.

## Metrics & Citations

### Metrics

### Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

#### Cited By

There are no citations for this item

## View Options

### Get Access

**Access via your Institution**- Questions about how to access this content? Contact SIAM at
**[email protected]**.