A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains
Abstract
This paper provides a provably quasi-optimal preconditioning strategy of the linear Schrödinger eigenvalue problem with periodic potentials for a possibly nonuniform spatial expansion of the domain. The quasi-optimality is achieved by having the iterative eigenvalue algorithms converge in a constant number of iterations for different domain sizes. In the analysis, we derive an analytic factorization of the spectrum and asymptotically describe it using concepts from the homogenization theory. This decomposition allows us to express the eigenpair as an easy-to-calculate cell problem solution combined with an asymptotically vanishing remainder. We then prove that the easy-to-calculate limit eigenvalue can be used in a shift-and-invert preconditioning strategy to bound the number of eigensolver iterations uniformly. Several numerical examples illustrate the effectiveness of this quasi-optimal preconditioning strategy.
1. , Applications of carbon nanotubes , in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications , M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., Topics in Applied Physics, Springer , Berlin, 2001 , pp. 391 -- 425 , https://doi.org/10.1007/3-540-39947-X_14.
2. , Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation, Numerical Mathematics and Scientific Computation , Oxford University Press , Oxford, UK , 2007 .
3. , A brief introduction to homogenization and miscellaneous applications , ESAIM Proc. , 37 ( 2012 ), pp. 1 -- 49 , https://doi.org/10.1051/proc/201237001.
4. , Homogenization of the criticality spectral equation in neutron transport , ESAIM Math. Model. Numer. Anal. , 33 ( 1999 ), pp. 721 -- 746 , https://doi.org/10.1051/m2an:1999160.
5. , Homogenization of a spectral problem in neutronic multigroup diffusion , Comput. Methods Appl. Mech. Eng. , 187 ( 2000 ), pp. 91 -- 117 , https://doi.org/10.1016/S0045-7825(99)00112-7.
6. , Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface , Ann. Mat. Pura Appl. , 181 ( 2002 ), pp. 247 -- 282 , https://doi.org/10.1007/s102310100040.
7. , Bloch wave homogenization and spectral asymptotic analysis , J. Math. Pures Appl. , 77 ( 1998 ), pp. 153 -- 208 , https://doi.org/10.1016/S0021-7824(98)80068-8.
8. , Analyse asymptotique spectrale d'un problème de diffusion neutronique , C. R. Acad. Sci. Ser. I Math. , 324 ( 1997 ), pp. 939 -- 944 , https://doi.org/10.1016/S0764-4442(97)86972-8.
9. , Homogenization of the Schrödinger equation and effective mass theorems , Comm. Math. Phys. , 258 ( 2005 ), pp. 1 -- 22 , https://doi.org/10.1007/s00220-005-1329-2.
10. , The FEniCS Project Version 1.5 , Arch. Numer. Softw., 3 ( 2015 , https://doi.org/10.11588/ans.2015.100.20553.
11. , Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials , Math. Models Methods Appl. Sci. , 30 ( 2020 ), pp. 917 -- 955 , https://doi.org/10.1142/S0218202520500190.
12. , The J-method for the Gross--Pitaevskii eigenvalue problem , Numer. Math. , 148 ( 2021 ), pp. 575 -- 610 , https://doi.org/10.1007/s00211-021-01216-5.
13. , Localization and delocalization of ground states of Bose--Einstein condensates under disorder , SIAM J. Appl. Math. , 82 ( 2022 ), pp. 330 -- 358 , https://doi.org/10.1137/20M1342434.
14. , Localized computation of eigenstates of random Schrödinger operators , SIAM J. Sci. Comput. , 41 ( 2019 ), pp. B1211 -- B1227 , https://doi.org/10.1137/19M1252594.
15. , GPELab, a Matlab toolbox to solve Gross--Pitaevskii equations I: Computation of stationary solutions , Comput. Phys. Commun. , 185 ( 2014 ), pp. 2969 -- 2991 , https://doi.org/10.1016/j.cpc.2014.06.026.
16. , GPELab, a Matlab toolbox to solve Gross--Pitaevskii equations II: Dynamics and stochastic simulations , Comput. Phys. Commun. , 193 ( 2015 ), pp. 95 -- 117 , https://doi.org/10.1016/j.cpc.2015.03.012.
17. , Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method , J. Comput. Phys. , 343 ( 2017 ), pp. 92 -- 109 , https://doi.org/10.1016/j.jcp.2017.04.040.
18. , Finite element--Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems , Math. Comput. , 52 ( 1989 ), p. 24 .
19. , Gridap: An extensible finite element toolbox in Julia , J. Open Source Softw. , 5 ( 2020 ), 2520 , https://doi.org/10.21105/joss.02520.
20. , eds., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide , Society for Industrial and Applied Mathematics , Philadelphia , 2000 , https://doi.org/10.1137/1.9780898719581.
21. , Julia: A fresh approach to numerical computing , SIAM Rev. , 59 ( 2017 ), pp. 65 -- 98 , https://doi.org/10.1137/141000671.
22. , Functional Analysis, Sobolev Spaces and Partial Differential Equations , Springer New York , 2010 , https://doi.org/10.1007/978-0-387-70914-7.
23. , Second-Order Homogenization of Periodic Schrödinger Operators with Highly Oscillating Potentials , 2021 , https://arxiv.org/abs/2112.12008.
24. , Convergence analysis of direct minimization and self-consistent iterations , SIAM J. Matrix Anal. Appl. , 42 ( 2021 ), pp. 243 -- 274 , https://doi.org/10.1137/20M1332864.
25. , Relaxation and domain formation in incommensurate two-dimensional heterostructures , Phys. Rev. B , 98 ( 2018 ), 224102 , https://doi.org/10.1103/PhysRevB.98.224102.
26. , Energy minimization of two dimensional incommensurate heterostructures , Arch. Rat. Mech. Anal. , 235 ( 2020 ), pp. 1289 -- 1325 , https://doi.org/10.1007/s00205-019-01444-y.
27. , On some anisotropic singular perturbation problems ,
Asymptot. Anal. , ( 2007 ), p. 21 , https://doi.org/10.5167/uzh-21524.28. goes to plus infinity: An update , J. Korean Soc. Ind. Appl. Math. , 18 ( 2014 ), pp. 107 -- 127 , https://doi.org/10.12941/JKSIAM.2014.18.107.
29. , Eigenvalues, eigenfunctions in domains becoming unbounded, in Hyperbolic Problems and Regularity Questions, M. Padula and L. Zanghirati, eds .,
Birkhäuser ,Basel , 2007 , pp. 69 -- 78 , https://doi.org/10.1007/978-3-7643-7451-8_8.30. , Numerical approximation of poisson problems in long domains ,
Vietnam J. Math. , ( 2021 00512 - 00519 . , https://doi.org/10.1007/s10013-021-00512-9.31. , On the asymptotic behaviour of the solution of elliptic problems in cylindrical domains becoming unbounded , Commun. Contemp. Math. , 04 ( 2002 ), pp. 15 -- 44 , https://doi.org/10.1142/S0219199702000555.
32. , On the asymptotic behaviour of the eigenmodes for elliptic problems in domains becoming unbounded , Trans. Amer. Math. Soc. , 360 ( 2008 ), pp. 3579 -- 3603 , https://doi.org/10.1090/S0002-9947-08-04361-4.
33. , Asymptotics of eigenstates of elliptic problems with mixed boundary data on domains tending to infinity , Asymptot. Anal. , 85 ( 2013 ), pp. 199 -- 227 , https://doi.org/10.3233/ASY-131182.
34. , On the asymptotic behaviour of elliptic problems with periodic data , C. R. Math. , 339 ( 2004 ), pp. 477 -- 482 , https://doi.org/10.1016/j.crma.2004.09.007.
35. , Methods of Mathematical Physics . Volume I , Wiley , New York , 1989 , https://doi.org/10.1002/9783527617210.
36. , Regularity of elliptic systems in divergence form with directional homogenization , Discrete Contin. Dyn. Syst. , 38 ( 2018 ), pp. 75 -- 90 , https://doi.org/10.3934/dcds.2018004.
37. , Directional homogenization of elliptic equations in non-divergence form , J. Differential Equations , 268 ( 2020 ), pp. 6611 -- 6645 , https://doi.org/10.1016/j.jde.2019.11.041.
38. , Convergence of inexact inverse iteration with application to preconditioned iterative solves , BIT Numer. Math. , 47 ( 2007 ), pp. 27 -- 44 , https://doi.org/10.1007/s10543-006-0100-1.
39. , Conditions for having a diffeomorphism between two Banach spaces , Electron. J. Differential Equations , 99 ( 2014 ), pp. 1 -- 6 .
40. , Elliptic Partial Differential Equations of Second Order , 2 nd ed., Classics in Mathematics, Springer-Verlag , Berlin, 2001 , https://doi.org/10.1007/978-3-642-61798-0.
41. , Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation , J. Comput. Phys. , 436 ( 2021 ), 110165 , https://doi.org/10.1016/j.jcp.2021.110165.
42. , Sobolev gradient flow for the Gross--Pitaevskii eigenvalue problem: Global convergence and computational efficiency , SIAM J. Numer. Anal. , 58 ( 2020 ), pp. 1744 -- 1772 , https://doi.org/10.1137/18M1230463.
43. , Extremum Problems for Eigenvalues of Elliptic Operators , Frontiers in Mathematics , Birkhäuser , Basel , 2006 , https://doi.org/10.1007/3-7643-7706-2.
44. , Black-box inhomogeneous preconditioning for self-consistent field iterations in density functional theory , J. Phys. Condensed Matter , 33 ( 2021 ), 085503 , https://doi.org/10.1088/1361-648X/abcbdb.
45. , Homogenization of Differential Operators and Integral Functionals , Springer-Verlag , Berlin , 1994 , https://doi.org/10.1007/978-3-642-84659-5.
46. , Homogenization of elliptic eigenvalue problems: Part 1 , Appl. Math. Optim. , 5 ( 1979 ), pp. 153 -- 167 , https://doi.org/10.1007/BF01442551.
47. , Homogenization of elliptic eigenvalue problems: Part 2 , Appl. Math. Optim. , 5 ( 1979 ), pp. 197 -- 216 , https://doi.org/10.1007/BF01442554.
48. , Some Applications of Weighted Sobolev Spaces , Teubner-Texte Zur Mathematik 100, Vieweg+Teubner Verlag , Wiesbaden , 1987 , https://doi.org/10.1007/978-3-663-11385-0.
49. , The best constant in weighted Poincaré and Friedrichs inequalities , Rend. Semin. Mat. Univ. Padova , 92 ( 1994 ), pp. 195 -- 208 .
50. , Asymptotic Analysis for Periodic Structures , Vol. 5 , 1 st ed., North Holland , Amsterdam , 1978 .
51. , Numerical Methods for Large Eigenvalue Problems , Classics Appl. Math. 66 , Society for Industrial and Applied Mathematics , Philadelphia , 2011 , https://doi.org/10.1137/1.9781611970739.
52. , First-order corrections to the homogenized eigenvalues of a periodic composite medium , SIAM J. Appl. Math. , 53 ( 1993 ), pp. 1636 -- 1668 , https://doi.org/10.1137/0153076.
53. , Finite Element Methods for Eigenvalue Problems ,
Chapman and Hall/CRC ,London , 2016 , https://doi.org/10.1201/9781315372419.54. , On homogenization for a periodic elliptic operator in a strip , St. Petersburg Math. J. , 16 ( 2004 ), pp. 237 -- 258 , https://doi.org/10.1090/S1061-0022-04-00849-0.
55. , ddEigenLab.jl : Domain-Decomposition Eigenvalue Problem Lab. Zenodo , May 2022 10 .5281/zenodo.6576197. , https://doi.org/10.5281/zenodo.6576197.
56. , fenicsR13: A Tensorial Mixed Finite Element Solver for the Linear R13 Equations Using the FEniCS Computing Platform , ACM Trans. Math. Softw. , 47 ( 2021 ), pp. 17: 1 -- 17 , https://doi.org/10.1145/3442378.
57. , Homogenization of eigenvalue problems in perforated domains , Proc. Indian Acad. Sci. Sec. A , 90 ( 1981 ), pp. 239 -- 271 , https://doi.org/10.1007/BF02838079.
58. , Computational Nanoscience: Applications for Molecules, Clusters, and Solids , Cambridge University Press , Cambridge, UK , 2011 , https://doi.org/10.1017/CBO9780511736230.
59. , Conjugated polymers: A systematic investigation of their electronic and geometric properties using density functional theory and semi-empirical methods , Synth. Met. , 246 ( 2018 ), pp. 128 -- 136 , https://doi.org/10.1016/j.synthmet.2018.10.007.
60. , Estimates of eigenvalues and eigenfunctions in elliptic homogenization with rapidly oscillating potentials , J. Differential Equations , 292 ( 2021 ), pp. 388 -- 415 , https://doi.org/10.1016/j.jde.2021.05.006.
61. , Sb. Math. , 189 ( 1998 ), pp. 1139 -- 1170 , https://doi.org/10.1070/SM1998v189n08ABEH000344.