Abstract

For given posets $P$ and $Q$ and an integer $n$, the generalized Turán problem for posets asks for the maximum number of copies of $Q$ in a $P$-free subset of the $n$-dimensional Boolean lattice, $2^{[n]}$. In this paper, among other results, we show the following: (i) For every $n\geq 5$, the maximum number of 2-chains in a butterfly-free subfamily of $2^{[n]}$ is $\lceil\frac{n}{2} \rceil\binom{n}{\lfloor n/2\rfloor}$. (ii) For every fixed $s$, $t$ and $k$, a $K_{s,t}$-free family in $2^{[n]}$ has $O (n\binom{n}{\lfloor n/2\rfloor})$ $k$-chains. (iii) For every $n\geq 3$, the maximum number of $2$-chains in an ${N}$-free family is $\binom{n}{\lfloor n/2\rfloor}$, where ${N}$ is a poset on 4 distinct elements $\{p_1,p_2,q_1,q_2\}$ for which $p_1 < q_1$, $p_2 < q_1$ and $p_2 < q_2$. (iv) We also prove exact results for the maximum number of 2-chains in a family that has no 5-path and asymptotic estimates for the number of 2-chains in a family with no 6-path.

Keywords

  1. generalized Turán
  2. butterfly-free poset
  3. comparable pairs

MSC codes

  1. 06A06
  2. 05D05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
N. Alon and C. Shikhelman, Many $T$ copies in $H$-free graphs, J. Combin. Theory Ser. B, 121 (2016), pp. 146--172.
2.
B. Bukh, Set families with a forbidden subposet, Electron. J. Combin., 16 (2009), R142.
3.
A. De Bonis, G.O.H. Katona, and K.J. Swanepoel, Largest family without $A\cup B\subseteq C\cap D$, J. Combin. Theory Ser. A, 111 (2005), pp. 331--336.
4.
A.P. Dove and J.R. Griggs, Packing posets in the Boolean lattice, Order, 32 (2015), pp. 429--438.
5.
P. Erd\Hos, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc., 51 (1945), pp. 898--902.
6.
P. Erd\Hos and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar., 10 (1959), pp. 337--356.
7.
P. Erd\Hos and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc., 52 (1946), pp. 1087--1091.
8.
P. Erd\Hos and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar., 1 (1966), pp. 51--57.
9.
D. Gerbner, B. Keszegh, and B. Patkós, Generalized forbidden subposet problems, Order, 37 (2020), pp. 389--410.
10.
D. Gerbner, A. Methuku, D.T. Nagy, B. Patkós, and M. Vizer, On the number of containments in P-free families, Graphs Combin., 35 (2019), pp. 1519--1540.
11.
D. Gerbner and B. Patkós, l-chain profile vectors, SIAM J. Discrete Math., 22 (2008), pp. 185--193.
12.
D. Gerbner and B. Patkós, Extremal Finite Set Theory, CRC Press, Boca Raton, FL, 2019.
13.
J.R. Griggs and W-T. Li, Progress on poset-free families of subsets, in Recent Trends in Combinatorics, IMA Vol. Math. Appl. 159, Springer, Cham, 2016, pp. 317--338.
14.
J.R. Griggs, W-T. Li, and L. Lu, Diamond-free families, J. Combin. Theory Ser. A, 119 (2012), pp. 310--322.
15.
D. Grósz, A. Methuku, and C. Tompkins, An upper bound on the size of diamond-free families of sets, J. Combin. Theory Ser. A, 156 (2018), pp. 164--194.
16.
G.O.H. Katona, Two applications of Sperner type theorems (for search theory and truth functions), Period. Math. Hungar., 3 (1973), pp. 19--26.
17.
G.O.H. Katona and D.T. Nagy, Incomparable copies of a poset in the Boolean lattice, Order, 32 (2015), pp. 419--427.
18.
G.O.H. Katona and T. Tarján, Extremal problems with excluded subgraphs in the $n$-cube, in Graph Theory, Lect. Notes Math. 1018, Springer-Verlag, Berlin, 1983, pp. 84--93.
19.
B. Patkós, The distance of $\cF$-free hypergraphs, Studia Sci. Math. Hungar., 46 (2009), pp. 275--286.
20.
E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z., 27 (1928), pp. 544--548.
21.
P. Turán, Eine Extremalaufgabe aus der Graphentheorie (Hungarian), Mat. Fiz. Lapok, 48 (1941), pp. 436--452.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 1483 - 1495
ISSN (online): 1095-7146

History

Submitted: 4 November 2021
Accepted: 27 February 2022
Published online: 23 June 2022

Keywords

  1. generalized Turán
  2. butterfly-free poset
  3. comparable pairs

MSC codes

  1. 06A06
  2. 05D05

Authors

Affiliations

Funding Information

Simon's Fellowship
Magyar Tudományos Akadémia https://doi.org/10.13039/501100003825
National Science Foundation https://doi.org/10.13039/100000001 : DMS-1764123, RTG DMS-1937241
Nemzeti Kutatási és Technológiai Hivatal https://doi.org/10.13039/501100003827 : FK 132060, K 132696, PD 137779
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal https://doi.org/10.13039/501100011019 : SNN 129364, FK 132060
Simons Foundation https://doi.org/10.13039/100000893 : 353292, 709641
University of Illinois at Urbana-Champaign https://doi.org/10.13039/100005302

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media