Abstract.

We create a novel connection between Boltzmann sampling methods and Devroye’s algorithm to develop highly efficient sampling procedures that generate objects from important combinatorial classes with a given size \(n\) in expected time \(O(n)\) . This performance is best possible and significantly improves the state of the art for samplers of subcritical graph classes (such as cactus graphs, outerplanar graphs, and series-parallel graphs), subcritical substitution-closed classes of permutations, Bienaymé–Galton–Watson trees conditioned on their number of leaves, and several further examples. Our approach allows for this high level of universality, as it applies in general to classes admitting bijective encodings by so-called enriched trees, which are rooted trees with additional structures on the offspring of each node.

Keywords

  1. Boltzmann sampling
  2. Galton–Watson trees
  3. exact-size sampling
  4. random graphs

MSC codes

  1. 65C10
  2. 65C05

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgment.

We thank the referees for the thorough reading of the manuscript and the helpful comments.

References

1.
M. Albert and M. Atkinson, Simple permutations and pattern restricted permutations, Discrete Math., 300 (2005), pp. 1–15.
2.
M. Bahrani and J. Lumbroso, Split-decomposition trees with prime nodes: Enumeration and random generation of cactus graphs, in the 2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), SIAM, Philadelphia, 2018, pp. 143–157, https://doi.org/10.1137/1.9781611975062.13.
3.
F. Bassino, M. Bouvel, V. Féray, L. Gerin, M. Maazoun, and A. Pierrot, Universal limits of substitution-closed permutation classes, J. Eur. Math. Soc. (JEMS), 22 (2020), pp. 3565–3639, https://doi.org/10.4171/JEMS/993.
4.
F. Bassino, M. Bouvel, A. Pierrot, C. Pivoteau, and D. Rossin, An algorithm computing combinatorial specifications of permutation classes, Discrete Appl. Math., 224 (2017), pp. 16–44, https://doi.org/10.1016/j.dam.2017.02.013.
5.
M. Bendkowski, O. Bodini, and S. Dovgal, Polynomial tuning of multiparametric combinatorial samplers, in the 2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), SIAM, Philadelphia, 2018, pp. 92–106, https://doi.org/10.1137/1.9781611975062.9.
6.
F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-Like Structures, Encyclopedia Math. Appl. 67, Cambridge University Press, Cambridge, UK, 1998.
7.
N. Bernasconi, K. Panagiotou, and A. Steger, The degree sequence of random graphs from subcritical classes, Combin. Probab. Comput., 18 (2009), pp. 647–681, https://doi.org/10.1017/S0963548309990368.
8.
O. Bodini, E. Fusy, and C. Pivoteau, Random sampling of plane partitions, Combin. Probab. Comput., 19 (2010), pp. 201–226, https://doi.org/10.1017/S0963548309990332.
9.
O. Bodini, D. Gardy, and A. Jacquot, Asymptotics and random sampling for BCI and BCK lambda terms, Theoret. Comput. Sci., 502 (2013), pp. 227–238, https://doi.org/10.1016/j.tcs.2013.01.008.
10.
O. Bodini and Y. Ponty, Multi-dimensional Boltzmann sampling of languages, in Proceedings of the 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA’10), 2010, pp. 49–63.
11.
O. Bodini, O. Roussel, and M. Soria, Boltzmann samplers for first-order differential specifications, Discrete Appl. Math., 160 (2012), pp. 2563–2572, https://doi.org/10.1016/j.dam.2012.05.022.
12.
M. Bodirsky, É. Fusy, M. Kang, and S. Vigerske, Boltzmann samplers, Pólya theory, and cycle pointing, SIAM J. Comput., 40 (2011), pp. 721–769, https://doi.org/10.1137/100790082.
13.
M. Bodirsky and M. Kang, Generating outerplanar graphs uniformly at random, Combin. Probab. Comput., 15 (2006), pp. 333–343, https://doi.org/10.1017/S0963548305007303.
14.
N. Bonichon, C. Gavoille, and N. Hanusse, Canonical decomposition of outerplanar maps and application to enumeration, coding and generation, J. Graph Algorithms Appl., 9 (2005), pp. 185–204, https://doi.org/10.7155/jgaa.00105.
15.
J. Borga, M. Bouvel, V. Féray, and B. Stufler, A decorated tree approach to random permutations in substitution-closed classes, Electron. J. Probab., 25 (2020), pp. 1–52, https://doi.org/10.1214/20-EJP469.
16.
M. Bouvel, P. Gambette, and M. Mansouri, Counting phylogenetic networks of level 1 and 2, J. Math. Biol., 81 (2020), pp. 1357–1395, https://doi.org/10.1007/s00285-020-01543-5.
17.
G. Chapuy, E. Fusy, M. Kang, and B. Shoilekova, A complete grammar for decomposing a family of graphs into 3-connected components, Electron. J. Combin., 15 (2008), R148, https://doi.org/10.37236/872.
18.
N. Curien and I. Kortchemski, Random non-crossing plane configurations: A conditioned Galton-Watson tree approach, Random Structures Algorithms, 45 (2014), pp. 236–260, https://doi.org/10.1002/rsa.20481.
19.
A. Denise and P. Zimmermann, Uniform random generation of decomposable structures using floating-point arithmetic, Theoret. Comput. Sci., 218 (1999), pp. 233–248.
20.
N. Dershowitz and S. Zaks, The cycle lemma and some applications, European J. Combin., 11 (1990), pp. 35–40, https://doi.org/10.1016/S0195-6698(13)80053-4.
21.
L. Devroye, Simulating size-constrained Galton–Watson trees, SIAM J. Comput., 41 (2012), pp. 1–11, https://doi.org/10.1137/090766632.
22.
M. Drmota, É. Fusy, M. Kang, V. Kraus, and J. Rué, Asymptotic study of subcritical graph classes, SIAM J. Discrete Math., 25 (2011), pp. 1615–1651, https://doi.org/10.1137/100790161.
23.
M. Drmota and M. Noy, Extremal parameters in sub-critical graph classes, in 2013 Proceedings of the Meeting on Analytic Algorithmics and Combinatorics (ANALCO), SIAM, Philadelphia, 2013, pp. 1–7, https://doi.org/10.1137/1.9781611973037.1.
24.
P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, Boltzmann samplers for the random generation of combinatorial structures, Combin. Probab. Comput., 13 (2004), pp. 577–625, https://doi.org/10.1017/S0963548304006315.
25.
R. Ehrenborg and M. Méndez, Schröder parenthesizations and chordates, J. Combin. Theory Ser. A, 67 (1994), pp. 127–139, https://doi.org/10.1016/0097-3165(94)90008-6.
26.
P. Flajolet, É. Fusy, and C. Pivoteau, Boltzmann sampling of unlabelled structures, in the 2007 Proceedings of the Fourth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), SIAM, Philadelphia, 2007, pp. 201–211, https://doi.org/10.1137/1.9781611972979.
27.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, UK, 2009, https://doi.org/10.1017/CBO9780511801655.
28.
P. Flajolet, P. Zimmerman, and B. Van Cutsem, A calculus for the random generation of labelled combinatorial structures, Theoret. Comput. Sci., 132 (1994), pp. 1–35, https://doi.org/10.1016/0304-3975(94)90226-7.
29.
É. Fusy, Uniform random sampling of planar graphs in linear time, Random Structures Algorithms, 35 (2009), pp. 464–522, https://doi.org/10.1002/rsa.20275.
30.
O. Giménez, D. Mitsche, and M. Noy, Maximum degree in minor-closed classes of graphs, European J. Combin., 55 (2016), pp. 41–61, https://doi.org/10.1016/j.ejc.2016.02.001.
31.
S. Janson, Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation, Probab. Surv., 9 (2012), pp. 103–252, https://doi.org/10.1214/11-PS188.
32.
D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. 1, 3rd ed., Addison-Wesley, Reading, MA, 1997.
33.
I. Kortchemski, Invariance principles for Galton-Watson trees conditioned on the number of leaves, Stochastic Process. Appl., 122 (2012), pp. 3126–3172, https://doi.org/10.1016/j.spa.2012.05.013.
34.
A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, 2nd ed., Academic Press, New York, London, 1978.
35.
K. Panagiotou and A. Steger, Maximal biconnected subgraphs of random planar graphs, ACM Trans. Algorithms, 6 (2010), 31, https://doi.org/10.1145/1721837.1721847.
36.
K. Panagiotou and B. Stufler, Scaling limits of random Pólya trees, Probab. Theory Related Fields, 170 (2018), pp. 801–820, https://doi.org/10.1007/s00440-017-0770-4.
37.
K. Panagiotou, B. Stufler, and K. Weller, Scaling limits of random graphs from subcritical classes, Ann. Probab., 44 (2016), pp. 3291–3334, https://doi.org/10.1214/15-AOP1048.
38.
C. Pivoteau, B. Salvy, and M. Soria, Algorithms for combinatorial structures: Well-founded systems and Newton iterations, J. Combin. Theory Ser. A, 119 (2012), pp. 1711–1773, https://doi.org/10.1016/j.jcta.2012.05.007.
39.
D. Rizzolo, Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), pp. 512–532, https://doi.org/10.1214/13-AIHP594.
40.
S. S. Skiena, The Algorithm Design Manual, 3rd ed., Texts Comput. Sci., Springer, Cham, 2020, https://doi.org/10.1007/978-3-030-54256-6.
41.
A. Sportiello, Boltzmann Sampling of Irreducible Context-Free Structures in Linear Time, preprint, https://arxiv.org/abs/2105.12881, 2021.
42.
B. Stufler, Scaling limits of random outerplanar maps with independent link-weights, Ann. Inst. H. Poincaré Probab. Stat., 53 (2017), pp. 900–915, https://doi.org/10.1214/16-AIHP741.
43.
B. Stufler, Random enriched trees with applications to random graphs, Electron. J. Combin., 25 (2018), 3.11.
44.
B. Stufler, Limits of random tree-like discrete structures, Probab. Surv., 17 (2020), pp. 318–477, https://doi.org/10.1214/19-PS338.
45.
B. Stufler, Graphon convergence of random cographs, Random Structures Algorithms, 59 (2021), pp. 464–491, https://doi.org/10.1002/rsa.21002.
46.
B. Stufler, A branching process approach to level- \(k\) phylogenetic networks, Random Structures Algorithms, 61 (2022), pp. 397–421.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 1097 - 1131
ISSN (online): 1095-7111

History

Submitted: 17 November 2021
Accepted: 26 June 2023
Published online: 4 October 2023

Keywords

  1. Boltzmann sampling
  2. Galton–Watson trees
  3. exact-size sampling
  4. random graphs

MSC codes

  1. 65C10
  2. 65C05

Authors

Affiliations

Konstantinos Panagiotou
Department of Mathematics, Ludwigs-Maximilians-Universität München, D-80333 München, Germany.
Leon Ramzews
Department of Mathematics, Ludwigs-Maximilians-Universität München, D-80333 München, Germany.
Benedikt Stufler Contact the author
Institute for Discrete Mathematics and Geometry, Technische Universität Wien, A-1040 Wien, Austria.

Funding Information

Funding: The first author’s research was supported by the European Research Council, ERC Grant Agreement 772606-PTRCSP. The second author’s research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project PA 2080/3-1.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media