Abstract

The paper investigates the accuracy of the model predictive control (MPC) method for finding on-line approximate optimal feedback control for Bolza-type problems on a fixed finite horizon. The predictions for the dynamics, the state measurements, and the solution of the auxiliary open-loop control problems that appear at every step of the MPC method may be inaccurate. The main result provides an error estimate of the MPC-generated solution compared with the optimal open-loop solution of the “ideal” problem, where all predictions and measurements are exact. The technique of proving the estimate involves an extension of the notion of strong metric subregularity of set-valued maps and utilization of a specific new metric in the control space, which makes the proof nonstandard. The result is specialized for two problem classes: coercive problems and affine problems.

Keywords

  1. optimal control
  2. Lagrange problem
  3. model predictive control
  4. metric subregularity

MSC codes

  1. 93B45
  2. 49M99
  3. 49J40
  4. 47J20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
W. Alt, U. Felgenhauer, and M. Seydenschwanz, Euler discretization for a class of nonlinear optimal control problems with control appearing linearly, Comput. Optim. Appl., 69 (2018), pp. 825--856.
2.
F.J. Aragón, A.L. Dontchev, M. Gaydu, M.H. Geoffroy, and V.M. Veliov, Metric regularity of Newton's iteration, SIAM J. Control Optim., 49 (2011), pp. 339--362.
3.
J. Baillieul and T. Samad, eds., Robust model-predictive control, in Encyclopedia of Systems and Control, Springer, London, 2020.
4.
R. Cibulka, A.L. Dontchev, and A.Y. Kruger, Strong metric subregularity of mappings in variational analysis and optimization, J. Math. Anal. Appl., 457 (2018), pp. 1247--1282.
5.
A. Domínguez Corella, M. Quincampoix, and V.M. Veliov, Strong bi-metric regularity in affine optimal control problems, Pure Appl. Funct. Anal., to appear.
6.
A. Domínguez Corella and V.M. Veliov, Hölder regularity in bang-bang type affine optimal control problems, in Proceedings of the International Conference on Large-Scale Scientific Computing, Springer, 2021.
7.
A.L. Dontchev, An a priori estimate for discrete approximations in nonlinear optimal control, SIAM J. Control Optim., 34 (1996), pp. 1315--1328.
8.
A.L. Dontchev and W.W. Hager, Lipschitzian stability in nonlinear control and optimization, SIAM J. Control Optim., 31 (1993), pp. 569--603.
9.
A.L. Dontchev, W.W. Hager, and V.M. Veliov, Second-order Runge--Kutta approximations in control constrained optimal control, SIAM J. Numer. Anal., 38 (2000), pp. 202--226.
10.
A.L. Dontchev, I.V. Kolmanovsky, M.I. Krastanov, and V.M. Veliov, Approximating open-loop and closed-loop optimal control by model predictive control, in Proceedings of the European Control Conference (ECC), IEEE, 2020, https://doi.org/10.23919/ECC51009.2020.9143615.
11.
A.L. Dontchev, I.V. Kolmanovsky, M.I. Krastanov, V.M. Veliov, and P.T. Vuong, Approximating optimal finite horizon feedback by model predictive control, Systems Control Lett., 139 (2020), 104666.
12.
A.L. Dontchev, M.I. Krastanov, and V.M. Veliov, On the existence of Lipschitz continuous optimal feedback control, Vietnam J. Math., 47 (2019), pp. 579--597.
13.
A.L. Dontchev and R.T. Rockafellar, Characterizations of Lipschitz stability in nonlinear programming, in Mathematical Programming With Data Perturbations, Lecture Notes Pure Appl. Math. 195, CRC Press, Boca Raton, FL, 1998, pp. 65--82.
14.
A.L. Dontchev and R.T. Rockafellar, Regularity and conditioning of solution mappings in variational analysis, Set-Valued Anal., 12 (2004), pp. 79--109.
15.
A.L. Dontchev and R.T. Rockafellar, Implicit Functions and Solution Mappings: A View from Variational Analysis, 2nd ed., Springer, New York, 2014.
16.
A.L. Dontchev and V.M. Veliov, Metric regularity under approximations, Control Cybernet., 38 (2009), pp. 1283--1303.
17.
U. Felgenhauer, On stability of bang-bang type controls, SIAM J. Control Optim., 41 (2003), pp. 1843--1867.
18.
G. Grimm, M. Messina, S. Tuna, and A.R. Teel, Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52 (2007), pp. 1856--1870.
19.
L. Grüne and V. Palma, On the benefit of re-optimization in optimal control under perturbations, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, 2014, pp. 439--446.
20.
L. Grüne and J. Panek, Nonlinear Model Predictive Control, Springer, London, 2011.
21.
D. Klatte and B. Kummer, Nonsmooth Equations in Optimization, Kluwer Academic Publishers, Norwell, MA, 2002.
22.
W. Langson, I. Chryssochoos, S.V. Raković, and D.Q. Mayne, Robust model predictive control usin tubes, Automatica, 40 (2004), pp. 125--133.
23.
N.P. Osmolovskii and V.M. Veliov, Metric sub-regularity in optimal control of affine problems with free end state, ESAIM Control Optim. Calc. Var., 26 (2020), 47.
24.
A. Pietrus, T. Scarinci, and V.M. Veliov, High order discrete approximations to Mayer's problems for linear systems, SIAM J. Control Optim., 56 (2018), pp. 102--119.
25.
S.V. Raković and W.S. Levine, eds., Handbook of Model Predictive Control, Birkhäuser, Cham, Switzerland, 2018.
26.
S.P. Sethi and G.L. Thompson, Optimal Control Theory: Applications to Management Science and Economics, Kluwer Academic Publishers, Norwell, MA, 2000.
27.
B. Wie, Space Vehicle Dynamics and Control, AIAA, Reston, VA, 1998.
28.
I.J. Wolf and W. Marquardt, Fast NMPC schemes for regulatory and economic NMPC--A review, J. Process Control, 44 (2016), pp. 162--183.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 2469 - 2487
ISSN (online): 1095-7138

History

Submitted: 18 November 2021
Accepted: 19 May 2022
Published online: 16 August 2022

Keywords

  1. optimal control
  2. Lagrange problem
  3. model predictive control
  4. metric subregularity

MSC codes

  1. 93B45
  2. 49M99
  3. 49J40
  4. 47J20

Authors

Affiliations

Alberto Domínguez Corella

Funding Information

Austrian Science Fund https://doi.org/10.13039/501100002428 : I4571

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media