Abstract.

Pattern formation arising from the reaction-diffusion epidemic model is a space-time depiction of the distribution and transmission of infectious diseases. Disease control can be achieved by controlling the associated pattern formations. For an SIR reaction-diffusion epidemic model, we review its Turing pattern formations with different transmission rates under the case of a constant recovery rate. To control pattern formations of the SIR epidemic model, we introduce a regulator as a control function of the recovery rate. For a perfect control strategy, it not only leads to a desired pattern formation, but also has a small support in space-time domains. In order to obtain such a control strategy, we propose a sparse optimal control problem governed by the SIR epidemic model. We study the existence of optimal solutions, derive the first order necessary optimality system, obtain the sparsity structure of the control function, and numerically solve the control problem. Numerical results demonstrate the feasibility and effectivity of our method.

Keywords

  1. reaction-diffusion
  2. epidemic model
  3. Turing pattern
  4. optimal control
  5. sparse control

MSC codes

  1. 35K57
  2. 49J20
  3. 49K20
  4. 92D30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
N. C. Apreutesei, An optimal control problem for a pest, predator, and plant system, Nonlinear Anal. Real World Appl., 13 (2012), pp. 1391–1400.
2.
V. Barbu, Analysis and Control of Nonlinear Infinite-Dimensional Systems, Math. Sci. Eng. 190, Academic Press, Boston, MA, 1993.
3.
V. Barbu, Mathematical Methods in Optimization of Differential Systems, Kluwer Academic Publishers, Dordrecht, 1994.
4.
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2nd ed., Springer, New York, 2012.
5.
J. Buceta, Finite cellsize effects on protein variability in Turing patterned tissues, J. R. Soc. Interface, 14 (2017), 20170316.
6.
J. Carlos and D. L. Reyes, Numerical PDE-Constrained Optimization, Springer, Cham, Switzerland, 2015.
7.
E. Casas, R. Herzog, and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with L1 cost functional, SIAM J. Optim., 22 (2012), pp. 795–820.
8.
E. Casas, R. Herzog, and G. Wachsmuth, Various ways to get sparsity in control problems of parabolic equations, in Proceedings of the 1st IFAC Workshop on Control of Systems Modeled by Partial Differential Equations, Paris, Curran Associates, Red Hook, NY, 2013.
9.
E. Casas, R. Herzog, and G. Wachsmuth, Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations, ESAIM Control Optim. Calc. Var., 23 (2017), pp. 263–295.
10.
E. Casas, C. Ryll, and F. Tröltzsch, Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems, Comput. Methods Appl. Math., 13 (2014), pp. 415–442.
11.
E. Casas, C. Ryll, and F. Tröltzsch, Second order and stability analysis for optimal sparse control of the FitzHugh–Nagumo equation, SIAM J. Control Optim., 53 (2015), pp. 2168–2202.
12.
L. L. Chang, C. Liu, G. Q. Sun, Z. Wang, and Z. Jin, Delay-induced patterns in a predator-prey model on complex networks with diffusion, New J. Phys., 21 (2019), 073035.
13.
W. Choi and E. Shim, Optimal strategies for social distancing and testing to control COVID-19, J. Theoret. Biol., 512 (2020), 110568.
14.
S. R. Choudhury, Turing instability in competition models with delay I: Linear theory, SIAM J. Appl. Math., 54 (1994), pp. 1425–1450.
15.
I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, Oxford University Press, New York, 1998.
16.
Z. Feng, S. Lenhart, and E. Jung, Optimal control of treatments in a two-strain tuberculosis model, Discrete Contin. Dyn. Syst. B, 2 (2002), pp. 473–482.
17.
W. E. Fitzgibbon, M. Langlais, and J. J. Morgan, A mathematical model of the spread of Feline Leukemia Virus (FeLV) through a highly heterogeneous spatial domain, SIAM J. Math. Anal., 33 (2001), pp. 570–588.
18.
S. P. Gao, L. L. Chang, I. Romić, Z. Wang, M. Jusup, and P. Holme, Optimal control of networked reaction-diffusion systems, J. R. Soc. Interface, 19 (2022), 20210739.
19.
M. R. Garvie and C. Trenchea, Optimal control of a nutrient-phytoplankton-zooplankton-fish system, SIAM J. Control Optim., 46 (2007), pp. 775–791.
20.
M. R. Garvie, Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB, Bull. Math. Biol., 69 (2007), pp. 931–956.
21.
M. R. Garvie, P. K. Maini, and C. Trenchea, An efficient and robust numerical algorithm for estimating parameters in Turing systems, J. Comput. Phys., 229 (2010), pp. 7058–7071.
22.
M. R. Garvie and C. Trenchea, Identification of space-time distributed parameters in the Gierer–Meinhardt reaction-diffusion system, SIAM J. Appl. Math., 74 (2014), pp. 147–166.
23.
N. C. Grassly, C. Fraser, J. Wenger, J. M. Deshpande, R. W. Sutter, D. L. Heymann, and R. B. Aylward, New strategies for the elimination of polio from India, Science, 314 (2006), pp. 1150–1153.
24.
E. V. Grigorieva, E. N. Khailov, and A. Korobeinikov, Optimal quarantine-related strategies for COVID control models, Stud. Appl. Math., 147 (2021), pp. 622–649.
25.
N. K. Gupta and R. E. Rink, Optimum control of epidemics, Math. Biosci., 18 (1973), pp. 383–396.
26.
H. R. Joshi, S. Lenhart, M. Y. Li, and L. Wang, Optimal control methods applied to disease models, in Mathematical Studies on Human Disease Dynamics Emerging Paradigms and Challenges, Contemp. Math. 410, American Mathematical Society, Providence, RI, 2006, pp. 187–207.
27.
D. Kirschner, S. Lenhart, and S. Serbin, Optimal control of the chemotherapy of HIV, J. Math. Biol., 35 (1997), pp. 775–792.
28.
C. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), pp. 1826–1828.
29.
A. L. Krause, V. Klika, T. E. Woolley, and E. A. Gaffney, From one pattern into another: Analysis of Turing patterns in heterogeneous domains via WKBJ, J. R. Soc. Interface, 17 (2020), 20190621.
30.
W. Liu, S. A. Levin, and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), pp. 187–204.
31.
W. Liu, H. W. Hethcote, and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), pp. 359–380.
32.
C. Liu, S. P. Gao, M. R. Song, Y. Bai, L. L. Chang, and Z. Wang, Optimal control of the reaction-diffusion process on directed networks, Chaos, 32 (2022), 063115.
33.
P. K. Maini, R. E. Baker, and C. M. Chuong, The Turing model comes of molecular age, Science, 314 (2006), pp. 1397–1398.
34.
M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015.
35.
P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms, and Applications, Marcel Dekker, New York, 1994.
36.
R. Ostfeld, G. Glass, and F. Keesing, Spatial epidemiology: An emerging (or re-emerging) discipline, Trends Ecol. Evol., 20 (2005), pp. 328–336.
37.
Q. Ouyang and H. L. Swinney, Transition from a uniform state to hexagonal and striped Turing patterns, Nature, 352 (1991), pp. 610–612.
38.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
39.
T. A. Perkins and G. España, Optimal control of the COVID-19 pandemic with non-pharmaceutical interventions, Bull. Math. Biol., 82 (2020), 118.
40.
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1984.
41.
C. S. Revelle, W. R. Lynn, and F. Feldmann, Mathematical models for the economic allocation of tuberculosis control activities in developing nations, Amer. Rev. Respir. Dis., 96 (1967), pp. 893–909.
42.
S. Riley and N. M. Ferguson, Smallpox transmission and control: Spatial dynamics in Great Britain, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 12637–12642.
43.
D. L. Smith, B. Lucey, L. A. Waller, J. E. Childs, and L. A. Real, Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 3668–3672.
44.
O. Stancevic, C. N. Angstmann, J. M. Murray, and B. I. Henry, Turing patterns from dynamics of early HIV infection, Bull. Math. Biol., 75 (2013), pp. 774–795.
45.
G. Q. Sun, Pattern formation of an epidemic model with diffusion, Nonlinear Dyn., 69 (2012), pp. 1097–1104.
46.
G. Q. Sun, M. Jusup, Z. Jin, Y. Wang, and Z. Wang, Pattern transitions in spatial epidemics: Mechanisms and emergent properties, Phys. Life Rev., 19 (2016), pp. 43–73.
47.
H. M. Taylor, Some models in epidemic control, Math. Biosci., 3 (1968), pp. 383–398.
48.
F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Grad. Stud. Math. 112, American Mathematical Society, Providence, RI, 2010.
49.
A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. B, 237 (1952), pp. 37–72.
50.
W. D. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), pp. 58–71.
51.
M. Xia, L. Böttcher, and T. Chou, Controlling epidemics through optimal allocation of test kits and vaccine doses across networks, IEEE Trans. Network Sci. Eng., 9 (2022), pp. 1422–1436.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 1764 - 1790
ISSN (online): 1095-712X

History

Submitted: 18 January 2022
Accepted: 7 July 2022
Published online: 18 October 2022

Keywords

  1. reaction-diffusion
  2. epidemic model
  3. Turing pattern
  4. optimal control
  5. sparse control

MSC codes

  1. 35K57
  2. 49J20
  3. 49K20
  4. 92D30

Authors

Affiliations

Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China, and Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis for Disease Control and Prevention, Taiyuan 030006, Shanxi, China ([email protected], [email protected], [email protected]).
LSEC & NCMIS, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China ([email protected]).
Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China, and Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis for Disease Control and Prevention, Taiyuan 030006, Shanxi, China ([email protected], [email protected], [email protected]).
Gui-Quan Sun
Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China, and Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis for Disease Control and Prevention, Taiyuan 030006, Shanxi, China ([email protected], [email protected], [email protected]).

Funding Information

Basic Applied Study Program of Shanxi Province: 20210302123453
Strategic Priority Research Program of Chinese Academy of Sciences: XDB 41000000
National Key Basic Research Program: 2018YFB0704304
Health Commission of Shanxi Province: 2020XM18
The work of the first author was supported by the Basic Applied Study Program of Shanxi Province under grant 20210302123453. The work of the second author was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant XDB 41000000), the National Key Basic Research Program (Grant 2018YFB0704304), and the National Natural Science Foundation of China under grant 12071468. The work of the third author was supported by the National Natural Science Foundation of China under grant 61873154 and the Health Commission of Shanxi Province under grant 2020XM18. The work of the fourth author was supported by the National Natural Science Foundation of China under grant 12022113.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media