Abstract.

In this paper, we study the problem of initial data identification for weak-entropy solutions of the one-dimensional Burgers equation. This problem consists in identifying the set of initial data evolving to a given target at a final time. Due to the time-irreversibility of the Burgers equation, some target functions are unattainable from solutions of this equation, making the identification problem under consideration ill-posed. To get around this issue, we introduce a nonsmooth optimization problem, which consists in minimizing the difference between the predictions of the Burgers equation and the observations of the system at a final time in \(L^2(\mathbb{R})\) norm. Here, we characterize the set of minimizers of the aforementioned nonsmooth optimization problem. One of the minimizers is the backward entropy solution, constructed using a backward-forward method. Some simulations are given using a wave-front tracking algorithm.

Keywords

  1. backward-forward method
  2. identification problems
  3. conservation laws
  4. weak-entropy solutions
  5. nonsmooth optimization problem
  6. wave-front tracking algorithm

MSC codes

  1. 35L65
  2. 35F20
  3. 93B30
  4. 35R30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Adimurthi, S. Ghoshal, and G. D. Veerappa Gowda, Exact controllability of scalar conservation laws with strict convex flux, Math. Control Relat. Fields, 4 (2014), pp. 401–449.
2.
N. Allahverdi, A. Pozo, and E. Zuazua, Numerical aspects of large-time optimal control of Burgers equation, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1371–1401.
3.
N. Allahverdi, A. Pozo, and E. Zuazua, Numerical aspects of sonic-boom minimization, in Panorama of Mathematics: Pure and Applied, Contemp. Math. 658, AMS, Providence, RI, 2016, pp. 267–279.
4.
J. J. Alonso and M. R. Colonno, Multidisciplinary optimization with applications to sonic-boom minimization, Annu. Rev. Fluid Mech., 44 (2012), pp. 505–526.
5.
C. Bardos and O. Pironneau, Data assimilation for conservation laws, Methods Appl. Anal., 12 (2005), pp. 103–134.
6.
A. F. Bennett, Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press, Cambridge, UK, 2005.
7.
F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal., 32 (1998), pp. 891–933.
8.
F. Bouchut and F. James, Differentiability with respect to initial data for a scalar conservation law, in Hyperbolic Problems: Theory, Numerics, Applications, Birkhäuser, Basel, 1999, pp. 113–118.
9.
A. Bressan and R. M. Colombo, Decay of positive waves in nonlinear systems of conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), pp. 133–160.
10.
A. Bressan and A. Marson, A maximum principle for optimally controlled systems of conservation laws, Rend. Sem. Mat. Univ. Padova, 94 (1995), pp. 79–94.
11.
A. Bressan and A. Marson, A variational calculus for discontinuous solutions of systems of conservation laws, Comm. Partial Differential Equations, 20 (1995), pp. 1491–1552.
12.
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
13.
C. Castro, F. Palacios, and E. Zuazua, An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks, Math. Models Methods Appl. Sci., 18 (2008), pp. 369–416.
14.
C. Castro, F. Palacios, and E. Zuazua, Optimal control and vanishing viscosity for the Burgers equation, in Integral Methods in Science and Engineering, Vol. 2, Birkhäuser Boston, Boston, MA, 2010, pp. 65–90.
15.
C. Chalons, Transport-equilibrium schemes for pedestrian flows with nonclassical shocks, in Traffic and Granular Flow’05, Springer, Berlin, Heidelberg, 2007, pp. 347–356.
16.
R. O. Cleveland, Propagation of Sonic Booms through a Real, Stratified Atmosphere, Ph.D. thesis, Citeseer, 1995.
17.
R. M. Colombo and V. Perrollaz, Initial data identification in conservation laws and Hamilton-Jacobi equations, J. Math. Pures Appl. (9), 138 (2020), pp. 1–27.
18.
R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), pp. 1553–1567.
19.
M. G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws, Math. Comp., 34 (1980), pp. 1–21.
20.
D. N. Daescu and I. M. Navon, Adaptive observations in the context of 4D-Var data assimilation, Meteorol. Atmos. Phys., 85 (2004), pp. 205–226.
21.
C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), pp. 33–41.
22.
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss. 325, Springer-Verlag, Berlin, 2010.
23.
C. Esteve and E. Zuazua, The inverse problem for Hamilton–Jacobi equations and semiconcave envelopes, SIAM J. Math. Anal., 52 (2020), pp. 5627–5657, https://doi.org/10.1137/20M1330130.
24.
M. Ghil and P. Malanotte-Rizzoli, Data assimilation in meteorology and oceanography, in Advances in Geophysics, Vol. 33, Elsevier, Amsterdam, 1991, pp. 141–266.
25.
O. Glass, An extension of Oleinik’s inequality for general 1d scalar conservation laws, J. Hyperbolic Differ. Equ., 5 (2008), pp. 113–165.
26.
J. Glimm, The interaction of nonlinear hyperbolic waves, Comm. Pure Appl. Math., 41 (1988), pp. 569–590.
27.
J. Glimm and D. Sharp, An S matrix theory for classical nonlinear physics, Found. Phys., 16 (1986), pp. 125–141.
28.
L. Gosse and E. Zuazua, Filtered gradient algorithms for inverse design problems of one-dimensional Burgers equation, in Innovative Algorithms and Analysis, Springer, Cham, 2017, pp. 197–227.
29.
H. Holden and N. H. Risebro, A method of fractional steps for scalar conservation laws without the CFL condition, Math. Comp., 60 (1993), pp. 221–232.
30.
E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, UK, 2003.
31.
S. N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR-Sb., 10 (1970), pp. 217–243.
32.
F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects, Tellus: Dyn. Meteorol. Oceanogr., 38 (1986), pp. 97–110.
33.
R. J. LeVeque, Numerical Methods for Conservation Laws, Lectures Math. ETH Zürich 132, Birkhäuser Verlag, Basel, 1992.
34.
Y. Li, S. Osher, and R. Tsai, Heat source identification based onconstrained minimization, Inverse Probl. Imaging, 8 (2014), pp. 199–221.
35.
T. Liard and E. Zuazua, Initial data identification for the one-dimensional Burgers equation, IEEE Trans. Automat. Control, 67 (2022), pp. 3098–3104, https://doi.org/10.1109/TAC.2021.3096921.
36.
J.-L. Lions and B. Malgrange, Sur l’unicité rétrograde dans les problèmes mixtes paraboliques, Math. Scand., 8 (1960), pp. 277–286.
37.
A. Majda, The existence of multidimensional shock Fronts, Mem. Amer. Math. Soc., 43 (1983), 281.
38.
A. Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc., 41 (1983), 275.
39.
O. A. Oleinik, Discontinuous solutions of non-linear differential equations, Uspehi Mat. Nauk (N.S.), 12 (1957), pp. 3–73.
40.
Y. Privat, E. Trélat, and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), pp. 1097–1126, https://doi.org/10.1016/j.anihpc.2012.11.005.
41.
Y. Privat, E. Trélat, and E. Zuazua, Optimal observation of the one-dimensional wave equation, J. Fourier Anal. Appl., 19 (2013), pp. 514–544, https://doi.org/10.1007/s00041-013-9267-4.
42.
Y. Privat, E. Trélat, and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data, Arch. Ration. Mech. Anal., 216 (2015), pp. 921–981, https://doi.org/10.1007/s00205-014-0823-0.
43.
D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, Cambridge, UK, 1999.
44.
K. Swanson, R. Vautard, and C. Pires, Four-dimensional variational assimilation and predictability in a quasi-geostrophic model, Tellus: Dyn. Meteorol. Oceanogr., 50 (1998), pp. 369–390.
45.
O. Talagrand and P. Courtier, Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory, Q. J. Roy. Meteorol. Soc., 113 (1987), pp. 1311–1328.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 1949 - 1968
ISSN (online): 1095-7154

History

Submitted: 17 February 2022
Accepted: 5 July 2022
Published online: 9 June 2023

Keywords

  1. backward-forward method
  2. identification problems
  3. conservation laws
  4. weak-entropy solutions
  5. nonsmooth optimization problem
  6. wave-front tracking algorithm

MSC codes

  1. 35L65
  2. 35F20
  3. 93B30
  4. 35R30

Authors

Affiliations

Université de Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France.
Enrique Zuazua
Chair in Applied Analysis, Alexander von Humboldt-Professorship, Department of Mathematics, Friedrich-Alexander-Universitat, Erlangen-Nurnberg, 91058 Erlangen, Germany, Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain, and Chair of Computational Mathematics, 48007 Bilbao, Basque Country, Spain.

Funding Information

Funding: The work of the authors was supported by the European Research Council (ERC) under European Union’s Horizon 2020 research and innovation programme grant 694126-DyCon, partially by ELKARTEK project KK-2018/00083 ROAD2DC of the Basque Government, by MINECO grant MTM2017-92996-C2-1-R/2-R COSNET, by Air Force Office of Scientific Research (AFOSR) grant FA9550-18-1-0242, by the Alexander von Humboldt-Professorship program, by the European Union’s Horizon 2020 research and the innovation programme under the Marie Skłodowska-Curie grant 765579-ConFlex, and by ANR grant ICON-ANR-16-ACHN-0014.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media